1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, and clinical utility. LWW; 2013. p. 727-9. [ DOI:10.1176/appi.books.9780890425596] 2. Henderson SE, Sugden DA, Barnett AL. Movement assessment battery for children: Harcourt Assessment London; 2007. [ DOI:10.1037/t55281-000] 3. Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with developmental coordination disorder. Research in developmental disabilities. 2013; 34(5): 1478-87. [ DOI:10.1016/j.ridd.2013.02.008] 4. Pangelinan MM, Hatfield BD, Clark JE. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. Journal of neurophysiology. 2013; 109(12): 3041-50. [ DOI:10.1152/jn.00532.2012] 5. Licari MK, Billington J, Reid SL, Wann JP, Elliott CM, Winsor AM, et al. Cortical functioning in children with developmental coordination disorder: a motor overflow study. Experimental brain research. 2015; 233(6): 1703-10. [ DOI:10.1007/s00221-015-4243-7] 6. Wilson PH, Smits‐Engelsman B, Caeyenberghs K, Steenbergen B, Sugden D, Clark J, et al. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Developmental Medicine & Child Neurology. 2017; 59(11): 1117-29. [ DOI:10.1111/dmcn.13530] 7. Missiuna C, Rivard L, Campbell W. Developmental coordination disorder. Handbook of DSM-5 disorders in children and adolescents: Springer; 2017. p. 431-50. [ DOI:10.1007/978-3-319-57196-6_22] 8. Gomez A, Sirigu A. Developmental coordination disorder: core sensori-motor deficits, neurobiology and etiology. Neuropsychologia. 2015; 79: 272-87. [ DOI:10.1016/j.neuropsychologia.2015.09.032] 9. Piek JP, Dyck MJ. Sensory-motor deficits in children with developmental coordination disorder, attention deficit hyperactivity disorder and autistic disorder. Human movement science. 2004; 23(3-4): 475-88. [ DOI:10.1016/j.humov.2004.08.019] 10. Banissy MJ, Muggleton NG. Transcranial direct current stimulation in sports training: potential approaches. Frontiers in human neuroscience. 2013; 7:129. [ DOI:10.3389/fnhum.2013.00129] 11. Ohn SH, Park C-I, Yoo W-K, Ko M-H, Choi KP, Kim G-M, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008; 19(1): 43-7. [ DOI:10.1097/WNR.0b013e3282f2adfd] 12. Sadock BJ, Sadock VA, Kaplan HI. Kaplan and Sadock's concise textbook of child and adolescent psychiatry: Lippincott Williams & Wilkins; 2009. 13. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clinical Neurophysiology. 2017; 128(4): 589-603. [ DOI:10.1016/j.clinph.2017.01.004] 14. Ballard HK, Goen JR, Maldonado T, Bernard JA. Effects of cerebellar transcranial direct current stimulation on the cognitive stage of sequence learning. Journal of neurophysiology. 2019; 122(2): 490-9. [ DOI:10.1152/jn.00036.2019] 15. Nemanich ST, Rich TL, Gordon AM, Friel KM, Gillick BT. Bimanual skill learning after transcranial direct current stimulation in children with unilateral cerebral palsy: a brief report. Developmental neurorehabilitation. 2019; 22(7): 504-8. [ DOI:10.1080/17518423.2019.1600065] 16. Kumari N, Taylor D, Rashid U, Vandal AC, Smith PF, Signal N. Cerebellar transcranial direct current stimulation for learning a novel split-belt treadmill task: A randomised controlled trial. Scientific reports. 2020 Jul 16; 10(1): 1-4. [ DOI:10.1038/s41598-020-68825-2] 17. Seidel-Marzi O, Ragert P. Neurodiagnostics in sports: Investigating the Athlete's brain to augment performance and sport-specific skills. Frontiers in human neuroscience. 2020; 14:133. [ DOI:10.3389/fnhum.2020.00133] 18. Gowan S, Hordacre B. Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions. Brain sciences. 2020; 10(5): 310. [ DOI:10.3390/brainsci10050310] 19. Ke Y, Wang N, Du J, Kong L, Liu S, Xu M, et al. The effects of transcranial direct current stimulation (tDCS) on working memory training in healthy young adults. Frontiers in human neuroscience. 2019; 13:19. [ DOI:10.3389/fnhum.2019.00019] 20. Framorando D, Cai T, Wang Y, Pegna AJ. Effects of Transcranial Direct Current Stimulation on effort during a working-memory task. Scientific Reports. 2021; 11(1): 1-9. [ DOI:10.1038/s41598-021-95639-7] 21. Assecondi S, Hu R, Eskes G, Pan X, Zhou J, Shapiro K. Impact of tDCS on working memory training is enhanced by strategy instructions in individuals with low working memory capacity. Scientific reports. 2021; 11(1): 1-11. [ DOI:10.1038/s41598-021-84298-3] 22. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental brain research. 2005; 166(1): 23-30. [ DOI:10.1007/s00221-005-2334-6] 23. Harris DJ, Wilson MR, Buckingham G, Vine SJ. No effect of transcranial direct current stimulation of frontal, motor or visual cortex on performance of a self-paced visuomotor skill. Psychology of Sport and Exercise. 2019; 43: 368-73. [ DOI:10.1016/j.psychsport.2019.04.014] 24. Ferreira IS, Costa BT, Ramos CL, Lucena P, Thibaut A, Fregni F. Searching for the optimal tDCS target for motor rehabilitation. Journal of neuroengineering and rehabilitation. 2019; 16(1): 1-12. [ DOI:10.1186/s12984-019-0561-5] 25. Newell KM. Coordination, control and skill. Advances in psychology. 27: Elsevier; 1985. p. 295-317. [ DOI:10.1016/S0166-4115(08)62541-8] 26. Molero-Chamizo A, Bailén JRA, Béjar TG, López MG, Rodríguez IJ, Lérida CG, et al. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. Cognitive, Affective, & Behavioral Neuroscience. 2018; 18(1): 167-75. [ DOI:10.3758/s13415-018-0561-0] 27. Pixa NH, Steinberg F, Doppelmayr M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience letters. 2017; 643:84-8. [ DOI:10.1016/j.neulet.2017.02.033] 28. Ciechanski P, Kirton A. Transcranial direct-current stimulation can enhance motor learning in children. Cerebral cortex. 2017; 27(5): 2758-67. [ DOI:10.1093/cercor/bhw114] 29. Gomes-Osman J, Field-Fote EC. Bihemispheric anodal corticomotor stimulation using transcranial direct current stimulation improves bimanual typing task performance. Journal of motor behavior. 2013; 45(4): 361-7. [ DOI:10.1080/00222895.2013.808604] 30. Grohs MN, Craig BT, Kirton A, Dewey D. Effects of transcranial direct current stimulation on motor function in children 8-12 years with developmental coordination disorder: A randomized controlled trial. Frontiers in Human Neuroscience. 2020; 14:608131. [ DOI:10.3389/fnhum.2020.608131] 31. Hillier S, McIntyre A, Plummer L. Aquatic physical therapy for children with developmental coordination disorder: A pilot randomized controlled trial. Physical & occupational therapy in pediatrics. 2010; 30(2): 111-24. [ DOI:10.3109/01942630903543575] 32. Jeon SY, Han SJ. Improvement of the working memory and naming by transcranial direct current stimulation. Annals of rehabilitation medicine. 2012; 36(5): 585. [ DOI:10.5535/arm.2012.36.5.585] 33. Tseng P, Hsu T-Y, Chang C-F, Tzeng OJ, Hung DL, Muggleton NG, et al. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience. 2012; 32(31): 10554-61. [ DOI:10.1523/JNEUROSCI.0362-12.2012] 34. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain stimulation. 2008; 1(3): 206-23. [ DOI:10.1016/j.brs.2008.06.004] 35. Ghotbi VA, Zarghami M, Saemi E, Maleki F. The effect of cognitive styles on accuracy: the role of working memory. journal of sport motor learning and development. 2012; 12(10): 61-78. 36. Antal A, Paulus W. Transcranial direct current stimulation and visual perception. Perception. 2008; 37(3): 367-74. [ DOI:10.1068/p5872] 37. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann K-P, Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of cognitive neuroscience. 2004; 16(4): 521-7. [ DOI:10.1162/089892904323057263] 38. Spiegel DP, Hansen BC, Byblow WD, Thompson B. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS One. 2012; 7(5): e36220. [ DOI:10.1371/journal.pone.0036220] 39. Stagg CJ, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning. Current Biology. 2011; 21(6): 480-4. [ DOI:10.1016/j.cub.2011.01.069] 40. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences. 2009; 106(5): 1590-5. [ DOI:10.1073/pnas.0805413106] 41. Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiology of learning and memory. 2002; 78(3): 553-64. [ DOI:10.1006/nlme.2002.4091] 42. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010; 66(2): 198-204. [ DOI:10.1016/j.neuron.2010.03.035] 43. Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain stimulation. 2017; 10(1): 51-8. [ DOI:10.1016/j.brs.2016.10.001]
|