[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 10, Issue 3 (Summer 2022) ::
Shefaye Khatam 2022, 10(3): 123-129 Back to browse issues page
A Narrative Review of the Role of Orexin in the Epileptogenesis
Taha Ghantabpour , Fariba Karimzadeh *
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran , Fariba_karimzade@yahoo.com
Abstract:   (870 Views)
Introduction: Epilepsy is a neurological disorder characterized by seizures and affects about 65-70 million people worldwide. Many pathways and molecules are altered in the epilepsy process that can be used as targets in the treatment of epilepsy. Orexin or hypocretin is a type of neurotransmitter that has a role in the epileptogenic process. Conclusion: The orexin system, by acting on the brainstem, modulates the activities of the limbic and neocortical areas, which is involved in epilepsy. In this study, the role of orexin in epilepsy and its potential mechanisms have been reviewed.
Keywords: Orexins, Epilepsy, Neurotransmitter Agents
Full-Text [PDF 426 kb]   (1056 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurophysiology
1. Mousazadeh O, Haji Alizadeh K. Prediction of Depression Based on Dysfunctional Attitudes, Personality Traits, and Family Communication Patterns among Patients with Epilepsy. The Neuroscience Journal of Shefaye Khatam. 2017; 5(4): 47-56. [DOI:10.18869/acadpub.shefa.5.4.47]
2. Ramazi S, KARIMZADEH F. A Review on the most Valuable Biomarkers in Epilepsy. 2018.
3. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia. 2017; 58: 2, 38-7. [DOI:10.1111/epi.13783]
4. Zavvari F, Alivan F, Abdi M, Jahanbazi Jahan-Abad A, Karimzadeh FJSSfH. Maternal exercise during pregnancy increases neuregulin-1 and ErbB4 expression in the newborn offspring of Wistar rats. 2022: 1-7. [DOI:10.1007/s11332-021-00878-w]
5. Voss MW, et al. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci. 2013; 17(10): 525-44. [DOI:10.1016/j.tics.2013.08.001]
6. Maass A, et al. . Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016; 131: 142-54. [DOI:10.1016/j.neuroimage.2015.10.084]
7. Ramazi s, Arani f, Safaei a, Abbasi z, Heidari z, Ghasemian nafchi h, et al. The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions. The Neuroscience Journal of Shefaye Khatam. 2021; (2)90, 39-1190 [DOI:10.52547/shefa.9.2.119]
8. de Vries EE, et al. Inflammatory mediators in human epilepsy: A systematic review and metaanalysis. Neurosci Biobehav Rev. 2016; (63): 177-90. [DOI:10.1016/j.neubiorev.2016.02.007]
9. Vezzani AaAF. Brain inflammation as a biomarker in epilepsy. Biomark Med. 2011; 5(5): 607-14. [DOI:10.2217/bmm.11.61]
10. Sinha S, Patil S, Jayalekshmy V, Satishchandra P. Do cytokines have any role in epilepsy? Epilepsy Research. 2008; 82(2-3): 171-6. [DOI:10.1016/j.eplepsyres.2008.07.018]
11. Chou IC, Lin WD, Wang CH, Tsai CH, Li TC, Tsai FJ. Interleukin (IL)‐1β, IL‐1 receptor antagonist, IL‐6, IL‐8, IL‐10, and tumor necrosis factor α gene polymorphisms in patients with febrile seizures. Journal of clinical laboratory analysis. 2010; 24(3): 154-9. [DOI:10.1002/jcla.20374]
12. Ramazi S, Arani F, Safaei A, Heidari Z, Ghasemian NH, MOHAMMADSADEGHI H, et al. The Role Of Astrocytes In The Central Nervous Sys Tem: Physiological And Pathophysiological Conditions. 2021. [DOI:10.52547/shefa.9.2.119]
13. Çikriklar HI, Kotan D, Yücel M, Ceylan M, Çiftçi GG, Bayraktutan ÖF, et al. The role of Orexin-A levels in epileptic seizure. Neuroscience Letters. 2020; 734: 135097. [DOI:10.1016/j.neulet.2020.135097]
14. Razavi BM, Farivar O, Etemad L, Hosseinzadeh H. Suvorexant, a dual orexin receptor antagonist, protected seizure through interaction with GABAA and glutamate receptors. Iranian Journal of Pharmaceutical Research: IJPR. 2020; 19(2): 383.
15. Kordi Jaz E, Moghimi A, Fereidoni M, Asadi S, Shamsizadeh A, Roohbakhsh A. SB‐334867, an orexin receptor 1 antagonist, decreased seizure and anxiety in pentylenetetrazol‐kindled rats. Fundamental & clinical pharmacology. 2017; 31(2): 201-7. [DOI:10.1111/fcp.12249]
16. Dehghani F, Ziyaei F, Asemi N. The Mediating Role of Spiritual Intelligence Dimensions in the Relationship between Mindfulness and Expressed Emotion in Caregivers of Epileptic Patients. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 73-82. [DOI:10.52547/shefa.9.3.73]
17. Rahbar Karbasdehi F, Hosseinkhanzadeh AA, Shakerinia I. The Effectiveness of Schema Therapy on Cognitive Emotion Regulation and Social Self- Efficacy in Adolescents with Epilepsy. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 64-72. [DOI:10.52547/shefa.9.3.64]
18. Mohammadkhani Ghiasvand N, Ghaderi F. Epileptic Seizure Prediction from Spectral, Temporal, and Spatial Features of EEG Signals Using Deep Learning Algorithms. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 110-9. [DOI:10.52547/shefa.9.1.110]
19. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014; 55(4): 475-82. [DOI:10.1111/epi.12550]
20. Barzroodi Pour M, Bayat M, Navazesh A, Soleimani M, Karimzadeh FJNR. Exercise Improved the Anti-Epileptic Effect of Carbamazepine through GABA Enhancement in Epileptic Rats. 2021; 46(8): 2112-30. [DOI:10.1007/s11064-021-03349-3]
21. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. The Lancet. 2019; 393(10172): 689-701. [DOI:10.1016/S0140-6736(18)32596-0]
22. Yacubian EM. Juvenile myoclonic epilepsy: Challenges on its 60th anniversary. Seizure. 2017; 44: 48-52. [DOI:10.1016/j.seizure.2016.09.005]
23. Drenthen GS, Backes WH, Aldenkamp AP, Vermeulen RJ, Klinkenberg S, Jansen JF. On the merits of non-invasive myelin imaging in epilepsy, a literature review. Journal of neuroscience methods. 2020; 338: 108687. [DOI:10.1016/j.jneumeth.2020.108687]
24. Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy research. 2018; 139: 73-9. [DOI:10.1016/j.eplepsyres.2017.11.015]
25. yaghoubi F, Jafarian M, Gorji A. The Anticonvulsant Effect of the Ketogenic Diet in the Treatment of Epilepsy. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 200-9. [DOI:10.52547/shefa.9.1.200]
26. Engel Jr J. Approaches to refractory epilepsy. Annals of Indian Academy of Neurology. 2014; 17(Suppl 1): S12. [DOI:10.4103/0972-2327.128644]
27. Lauritzen F, Eid T, Bergersen LH. Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Structure and Function. 2015; 220(1): 1-12. [DOI:10.1007/s00429-013-0672-x]
28. Neal EG, Cross J. Efficacy of dietary treatments for epilepsy. Journal of human nutrition and dietetics. 2010; 23(2): 113-9. [DOI:10.1111/j.1365-277X.2010.01043.x]
29. Roshannia S, Rezaei F, Ghadampoor E. An Overview of Psychological Factors in Epilepsy. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 110-23. [DOI:10.18869/acadpub.shefa.5.2.110]
30. Scheffer IE, French J, Hirsch E, Jain S, Mathern GW, Moshé SL, et al. Classification of the epilepsies: New concepts for discussion and debate-Special report of the ILAE Classification Task Force of the Commission for Classification and Terminology. Epilepsia open. 2016; 1(1-2): 37-44. [DOI:10.1002/epi4.5]
31. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomedicine & Pharmacotherapy. 2017; 90: 187-93. [DOI:10.1016/j.biopha.2017.03.053]
32. Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, et al. Orexin system: the key for a healthy life. Frontiers in physiology. 2017; 8: 357. [DOI:10.3389/fphys.2017.00357]
33. Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Frontiers in behavioral neuroscience. 2013; 7: 28. [DOI:10.3389/fnbeh.2013.00028]
34. Soya S, Sakurai T. Evolution of orexin neuropeptide system: Structure and function. Frontiers in Neuroscience. 2020; 14: 691. [DOI:10.3389/fnins.2020.00691]
35. Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. British journal of pharmacology. 2014; 171(2): 332-50. [DOI:10.1111/bph.12415]
36. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and-insensitive G-proteins. Journal of pharmacological sciences. 2003; 92(3): 259-66. [DOI:10.1254/jphs.92.259]
37. De Lecea L, Kilduff T, Peyron C, Gao X-B, Foye P, Danielson P, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences. 1998; 95(1): 322-7. [DOI:10.1073/pnas.95.1.322]
38. Kalogiannis M, Grupke S, Potter P, Edwards J, Chemelli R, Kisanuki Y, et al. Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons. European Journal of Neuroscience. 2010; 32(1): 130-42. [DOI:10.1111/j.1460-9568.2010.07259.x]
39. Dauvilliers Y, Baumann C, Carlander B, Bischof M, Blatter T, Lecendreux M, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. Journal of Neurology, Neurosurgery & Psychiatry. 2003; 74(12): 1667-73. [DOI:10.1136/jnnp.74.12.1667]
40. Chiou L-C, Lee H-J, Ho Y-C, Chen S-P, Liao Y-Y, Ma C-H, et al. Orexins/hypocretins: pain regulation and cellular actions. Current pharmaceutical design. 2010; 16(28): 3089-100. [DOI:10.2174/138161210793292483]
41. Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M. Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain research. 1999; 821(2): 526-9. [DOI:10.1016/S0006-8993(99)01131-2]
42. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain research. 1999; 827(1-2): 243-60. [DOI:10.1016/S0006-8993(99)01336-0]
43. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proceedings of the National Academy of Sciences. 1999; 96(19): 10911-6. [DOI:10.1073/pnas.96.19.10911]
44. Bonnavion P, de Lecea L. Hypocretins in the control of sleep and wakefulness. Current neurology and neuroscience reports. 2010; 10(3): 174-9. [DOI:10.1007/s11910-010-0101-y]
45. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Reviews Neuroscience. 2007; 8(3): 171-81. [DOI:10.1038/nrn2092]
46. Selbach O, Doreulee N, Bohla C, Eriksson K, Sergeeva O, Poelchen W, et al. Orexins/hypocretins cause sharp wave-and θ-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience. 2004; 127(2): 5190-28. [DOI:10.1016/j.neuroscience.2004.05.012]
47. Lagrange A, Blaivas M, Gomez-Hassan D, Malow B. Rasmussen's syndrome and new-onset narcolepsy, cataplexy, and epilepsy in an adult. Epilepsy & Behavior. 2003; 4(6): 788-92. [DOI:10.1016/j.yebeh.2003.08.030]
48. Rejdak K, Papuć E, Grieb P, Stelmasiak Z. Decreased cerebrospinal fluid hypocretin‐1 (orexin A) in patients after repetitive generalized tonic-clonic seizures. Epilepsia. 2009; 50(6): 1641-4. [DOI:10.1111/j.1528-1167.2008.01990.x]
49. Goudarzi E, Salmani ME, Lashkarbolouki T, Goudarzi I. Hippocampal orexin receptors inactivation reduces PTZ induced seizures of male rats. Pharmacology Biochemistry and Behavior. 2015; 130: 77-83. [DOI:10.1016/j.pbb.2015.01.006]
50. Kaciñski M, Budziszewska B, Lasoñ W, Zając A, Skowronek-Bała B, Leśkiewicz M, et al. Level of S100B protein, neuron specific enolase, orexin A, adiponectin and insulin-like growth factor in serum of pediatric patients suffering from sleep disorders with or without epilepsy. Pharmacological Reports. 2012; 64(6): 1427-33. [DOI:10.1016/S1734-1140(12)70940-4]
51. Samzadeh M, Papuć E, Furtak-Niczyporuk M, Rejdak K. Decreased Cerebrospinal Fluid Orexin-A (Hypocretin-1) Concentrations in Patients after Generalized Convulsive Status Epilepticus. Journal of Clinical Medicine. 2020; 9(10): 3354. [DOI:10.3390/jcm9103354]
52. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in endocrinology. 2013; 4: 18. [DOI:10.3389/fendo.2013.00018]
53. Ng MC. Orexin and epilepsy: potential role of REM sleep. Sleep. 2017; 40(3): zsw061. [DOI:10.1093/sleep/zsw061]
54. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. The Lancet. 2000; 355(9197): 39-40. [DOI:10.1016/S0140-6736(99)05582-8]
55. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001; 30(2): 345-54. [DOI:10.1016/S0896-6273(01)00293-8]
56. Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proceedings of the National Academy of Sciences. 2011; 108(11): 4471-6. [DOI:10.1073/pnas.1012456108]
57. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. Journal of Neuroscience. 2004; 24(28): 6291-300. [DOI:10.1523/JNEUROSCI.0586-04.2004]
58. Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre J-P, et al. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. Journal of Neuroscience. 2009; 29(46): 14423-38. [DOI:10.1523/JNEUROSCI.2604-09.2009]
59. Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. Sleep. 2016; 39(2): 357-68. [DOI:10.5665/sleep.5444]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghantabpour T, Karimzadeh F. A Narrative Review of the Role of Orexin in the Epileptogenesis. Shefaye Khatam 2022; 10 (3) :123-129
URL: http://shefayekhatam.ir/article-1-2326-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (Summer 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4642