[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 10, Issue 3 (Summer 2022) ::
Shefaye Khatam 2022, 10(3): 48-56 Back to browse issues page
Anti-Inflammatory Effects of Nano- Curcumin on a Glioblastoma Cell Line
Golamhossein Tondro , Ghadir Rajabzade , Ali Mohammadi * , Hamidreza Moradi , Sajad Sahab Negah
Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran , mohammad@shirazu.ac.ir
Abstract:   (1238 Views)
Introduction: Glioblastoma multiforme is known as an aggressive brain tumor that is characterized by a high rate of recurrence. Current treatment strategies are not effective for GBM; therefore, novel targeted therapeutic options are urgently required. Nanocarrier-based drug delivery has recently gained attention due to the characteristics of blood-brain barrier permeability, continued drug release, improved solubility, and enhanced drug bioactivity. To this point, we investigated the superior effect of a nano-form of curcumin vs. free-form on the secretion of pro-inflammatory cytokines profile (i.e., IL6 and TNF-α) in the U87 cell line. Materials and Methods: The U87 cell line was purchased from the Iranian Biological Resource Center and expanded in the DMEM/F12 media with 10% FBS and 1% Pen/Strep. To synthesize nanoniosome containing curcumin, the thin-film hybridization method was used. To evaluate the production of IL6 and TNF-α by ELISA method, U87 cells were treated with 84.87 µg/ml of Nano-curcumin and 47 µg/ml of free curcumin. Results: Our results indicated that the production of IL6 and TNF-α was significantly decreased when treated with nano-form and free curcumin. Interestingly, we observed that nano-curcumin could significantly inhibit the secretion of IL6 and TNF-α compared to the curcumin group. Conclusion: The most obvious finding to emerge from this study is that nano-curcumin exerts antiimflammatory effects on glioblastoma.
Keywords: Cell Line, Nanotechnology, Curcumin
Full-Text [PDF 620 kb]   (1403 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Abdolahi S, Ghasemi S, Azarhomayoun A, Gorji A. O27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 27-.
2. Aldoghachi AF, Aldoghachi AF, Bryne K, Ling K-H, Cheah PS. Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience. 2022. [DOI:10.1016/j.neuroscience.2022.03.030]
3. Ghani ARI, Yahya EB, Allaq AA, Khalil ASA. Novel insights into genetic approaches in glioblastoma multiforme therapy. Biomedical Research and Therapy. 2022; 9(1): 4851-64. [DOI:10.15419/bmrat.v9i1.722]
4. Urbańska K, Sokołowska J, Szmidt M, Sysa P. Glioblastoma multiforme-an overview. Contemporary Oncology/Współczesna Onkologia. 2014; 18(5): 307-12. [DOI:10.5114/wo.2014.40559]
5. Estiri M. P154: Role of Exosomes as Novel Biomarkers in Diagnosis and Prognosis of Glioblastoma. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 185.
6. Faramarzi A, Allahverdy A, Amiri M, Raminfard S, Siyah Mansoory M. P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 94.
7. Stegh AH, Kesari S, Mahoney JE, Jenq HT, Forloney KL, Protopopov A, et al. Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proceedings of the National Academy of Sciences. 2008; 105(31): 10703-8. [DOI:10.1073/pnas.0712034105]
8. Akbari M, Sagheb Z, Haddadian M. P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 188.
9. de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Infection and Inflammation: Impacts on Oncogenesis. 2006; 13:118-37. [DOI:10.1159/000092969]
10. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6): 883-99. [DOI:10.1016/j.cell.2010.01.025]
11. Muñoz-Pérez VM, Cariño-Cortés R, López-Santillán IC, Salas-Casas A. Inflammation in Cancer Development. Mexican Journal of Medical Research ICSA. 2022; 10(19): 48-51. [DOI:10.29057/mjmr.v10i19.8112]
12. Alizadeh L, Gorizan A, Akbari Dana M, Ghaemi A. Immunotherapy of Glioblastoma Multiforme Tumors: From Basic to Clinical Trial Studies. The Neuroscience Journal of Shefaye Khatam. 2015; 3(2): 77-84. [DOI:10.18869/acadpub.shefa.3.2.77]
13. Fontana A, Hengartner H, De Tribolet N, Weber E. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. The Journal of Immunology. 1984; 132(4): 1837-44.
14. Ashrafizadeh M, Asemani V, Abdollahzadeh S. P89: The Relationship Between the TNFα of the Microglial Cells and the Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 120.
15. MoghadamQaeini M, Sheidae Mehne Z, MoghadamQaeini F. P 63: Role of Neuroinflammation in Depression. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 94.
16. Saberi A, Ghodsi H. P 20: Neutrophil to Lymphocyte Ratio as a Prognostic Marker in Glioblastoma Multiforme: a Systematic Review and Meta-Analysis. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 51.
17. Van Meir E, Sawamura Y, Diserens A-C, Hamou M-F, de Tribolet N. Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer research. 1990; 50(20): 6683-8.
18. Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Current opinion in genetics & development. 2008; 18(1): 3-10. [DOI:10.1016/j.gde.2008.01.003]
19. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine. 2008; 43(3): 374-9. [DOI:10.1016/j.cyto.2008.07.014]
20. Harada K, Yoshida J, Mizuno M, Sugita K, Kurisu K, Uozumi T. Growth inhibition of subcutaneously transplanted human glioma by transfection-induced tumor necrosis factor-α and augmentation of the effect by γ-interferon. Journal of neuro-oncology. 1994; 22(3): 221-5. [DOI:10.1007/BF01052922]
21. Lichtor T, Dohrmann GJ, Gurney ME. Cytokine gene expression by human gliomas. Neurosurgery. 1990; 26(5): 788-93. [DOI:10.1227/00006123-199005000-00009]
22. Yasukawa K, Hirano T, Watanabe Y, Muratani K, Matsuda T, Nakai S, et al. Structure and expression of human B cell stimulatory factor‐2 (BSF‐2/IL‐6) gene. The EMBO journal. 1987; 6(10): 2939-45. [DOI:10.1002/j.1460-2075.1987.tb02598.x]
23. Gridley DS, Loredo LN, Slater JD, Archambeau JO, Bedros AA, Andres ML, et al. Pilot evaluation of cytokine levels in patients undergoing radiotherapy for brain tumor. Cancer detection and prevention. 1998; 22(1): 20-9. [DOI:10.1046/j.1525-1500.1998.00010.x]
24. Hong J-H, Chiang C-S, Campbell IL, Sun J-R, Withers HR, McBride WH. Induction of acute phase gene expression by brain irradiation. International Journal of Radiation Oncology* Biology* Physics. 1995; 33(3): 619-26. [DOI:10.1016/0360-3016(95)00279-8]
25. Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. Journal of cancer research and clinical oncology. 2015; 141(4): 575-89. [DOI:10.1007/s00432-014-1772-6]
26. Ilyin SE, González-Gómez I, Romanovicht A, Gayle D, Gilles FH, Plata-Salamán CR. Autoregulation of the interleukin-1 system and cytokine-cytokine interactions in primary human astrocytoma cells. Brain research bulletin. 2000; 51(1): 29-34. [DOI:10.1016/S0361-9230(99)00190-2]
27. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, et al. Induction of vascular endothelial growth factor by tumor necrosis factor α in human glioma cells: possible roles of SP-1. Journal of Biological Chemistry. 1996; 271(45): 28220-8. [DOI:10.1074/jbc.271.45.28220]
28. Spooren A, Mestdagh P, Rondou P, Kolmus K, Haegeman G, Gerlo S. IL-1β potently stabilizes IL-6 mRNA in human astrocytes. Biochemical pharmacology. 2011; 81(8): 1004-15. [DOI:10.1016/j.bcp.2011.01.019]
29. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. Journal of neuroinflammation. 2010; 7(1): 1-8. [DOI:10.1186/1742-2094-7-16]
30. Yeung YT, Bryce NS, Adams S, Braidy N, Konayagi M, McDonald KL, et al. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. Journal of neuro-oncology. 2012; 109(1): 35-44. [DOI:10.1007/s11060-012-0875-7]
31. Sadoughi D, Khayatzadeh J. Effect of Curcumin on Hippocampal Levels of Brain-Derived Neurotrophic Factor and Serum Levels of Inflammatory Cytokines in Rat Model for Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2018; 6(1): 1-9. [DOI:10.29252/shefa.6.1.1]
32. Weissenberger J, Loeffler S, Kappeler A, Kopf M, Lukes A, Afanasieva TA, et al. IL-6 is required for glioma development in a mouse model. Oncogene. 2004; 23(19): 3308-16. [DOI:10.1038/sj.onc.1207455]
33. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi B-Z. Interleukin 6 Induces the Expression of Vascular Endothelial Growth Factor (∗). Journal of Biological Chemistry. 1996; 271(2): 736-41. [DOI:10.1074/jbc.271.2.736]
34. Rolhion C, Penault-Llorca F, Chevillard S, Verrelle P, Finat-Duclos F. Quantification of RT-PCR Products: Ethidium Bromide-Stained Gel Analysis Compared With Fluorescent Detection Using an Automated Sequencer. Laboratory Medicine. 1999; 30(6): 419-22. [DOI:10.1093/labmed/30.6.419]
35. Liu W-T, Lin C-H, Hsiao M, Gean P-W. Minocycline inhibits the growth of glioma by inducing autophagy. Autophagy. 2011; 7(2): 166-75. [DOI:10.4161/auto.7.2.14043]
36. Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene. 2002; 21(55): 8404-13. [DOI:10.1038/sj.onc.1206047]
37. Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/ CCR2/ interleukin-6 axis. Carcinogenesis. 2012; 33(2): 312-9. [DOI:10.1093/carcin/bgr289]
38. Morse MA, Lyerly HK, Clay TM, Abdel-Wahab O, Chui SY, Garst J, et al. Immunotherapy of surgical malignancies. Current problems in surgery. 2004; 41(1): 15-132. [DOI:10.1016/j.cpsurg.2003.08.001]
39. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta neuropathologica. 2002; 103(2): 171-8. [DOI:10.1007/s004010100448]
40. Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and cellular biology. 1997; 17(7): 4015-23. [DOI:10.1128/MCB.17.7.4015]
41. Baradaran S, Hajizadeh Moghaddam A, Khanjani Jelodar S. P73: Nano-Phytosome of Curcumin Improve Behavioral Impairment on Carrageenan-Induced Acute Inflammation Model in Mice. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 104.
42. Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK. Micro-and nanocarrier-mediated lung targeting. Expert opinion on drug delivery. 2010; 7(7): 781-94. [DOI:10.1517/17425247.2010.492212]
43. Mohamad Saimi NI, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: Optimization, characterization and in vitro evaluation. Pharmaceutics. 2021; 13(1): 59. [DOI:10.3390/pharmaceutics13010059]
44. Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents: Elsevier; 2020. p. 525-53. [DOI:10.1016/B978-0-12-819666-3.00018-3]
45. Liu Y-L, Yang H-P, Gong L, Tang C-L, Wang H-J. Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines. Molecular medicine reports. 2011; 4(4): 675-9.
46. McLoed AG, Sherrill TP, Cheng D-S, Han W, Saxon JA, Gleaves LA, et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell reports. 2016; 16(1): 120-32. [DOI:10.1016/j.celrep.2016.05.085]
47. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy. 2017; 85: 102-12. [DOI:10.1016/j.biopha.2016.11.098]
48. Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, et al. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: an in vitro study. Molecular Neurobiology. 2020; 57(8): 3391-411. [DOI:10.1007/s12035-020-01922-5]
49. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative medicine review. 2009; 14(2).
50. Reddy ACP, Lokesh B. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food and chemical toxicology. 1994; 32(3): 279-83. [DOI:10.1016/0278-6915(94)90201-1]
51. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (" nanocurcumin"): a novel strategy for human cancer therapy. Journal of nanobiotechnology. 2007; 5(1): 1-18. [DOI:10.1186/1477-3155-5-3]
52. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nature reviews immunology. 2003; 3(9): 745-56. [DOI:10.1038/nri1184]
53. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature medicine. 1999; 5(7): 828-31. [DOI:10.1038/10552]
54. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino Jr MA, Shepard HM. Recombinant human tumor necrosis factor-α: effects on proliferation of normal and transformed cells in vitro. Science. 1985; 230(4728): 943-5. [DOI:10.1126/science.3933111]
55. Tchirkov A, Khalil T, Chautard E, Mokhtari K, Veronese L, Irthum B, et al. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. British journal of cancer. 2007; 96(3): 474-6. [DOI:10.1038/sj.bjc.6603586]
56. Tchirkov A, Rolhion C, Bertrand S, Dore J, Dubost J, Verrelle P. IL-6 gene amplification and expression in human glioblastomas. British journal of cancer. 2001; 85(4): 518-22. [DOI:10.1054/bjoc.2001.1942]
57. Reynés G, Vila V, Martín M, Parada A, Fleitas T, Reganon E, et al. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. Journal of neuro-oncology. 2011; 102(1): 35-41. [DOI:10.1007/s11060-010-0290-x]
58. Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes & development. 2010; 24(16): 1731-45. [DOI:10.1101/gad.1890510]
59. Senft C, Priester M, Polacin M, Schröder K, Seifert V, Kögel D, et al. Inhibition of the JAK-2/STAT3 signaling pathway impedes the migratory and invasive potential of human glioblastoma cells. Journal of neuro-oncology. 2011; 101(3): 393-403. [DOI:10.1007/s11060-010-0273-y]
60. Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochemical pharmacology. 2005; 70(5): 700-13. [DOI:10.1016/j.bcp.2005.04.043]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tondro G, Rajabzade G, Mohammadi A, Moradi H, Sahab Negah S. Anti-Inflammatory Effects of Nano- Curcumin on a Glioblastoma Cell Line. Shefaye Khatam 2022; 10 (3) :48-56
URL: http://shefayekhatam.ir/article-1-2329-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (Summer 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4652