[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Articles In Press ::
Back to the articles list Back to browse issues page
The role of biomarkers in anxiety disorders
Zahra Behzad Basirat , Faezeh Yaghoubi , Nafiseh Hadei , Fatemeh Davoodi-Dehaghani , Amir mohamad Behzad Basirat * , Batool Mousavi
a. Janbazan Medical and Engineering Research Center (JMERC), Tehran, Iran. b. Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. c. Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran. , mb.amir103@gmail.com
Abstract:   (49 Views)
Introduction: Anxiety disorders are among the most prevalent psychiatric illnesses, with their incidence increasing alongside the development of modern societies. The World Health Organization reports that the number of individuals affected by these disorders has increased by more than 1.5-fold in recent years. These disorders encompass a wide spectrum, including separation anxiety, selective mutism, various phobias, social anxiety disorder, generalized anxiety disorder, panic disorder, and agoraphobia. Studies indicate that the prevalence of these disorders is approximately twice as high in women as in men, and unfortunately, the rates of these conditions are higher in Iran compared to many other countries. In recent years, the use of biomarkers has gained attention as a novel tool for diagnosing and better understanding psychiatric illnesses, including anxiety disorders. Biomarkers are measurable indicators that can reflect the biological state of the body or the severity of a disease. This study aims to investigate the potential role of several markers—such as cortisol, growth hormone, serotonin, insulin, testosterone, catecholamines, gamma-aminobutyric acid (GABA), glucocorticoids, immunoglobulins, fibroblast growth factor 2, and inflammatory factors, in the occurrence and exacerbation of anxiety disorders. Alterations in the levels of hormones and neurotransmitters like cortisol (the stress hormone), serotonin (mood regulator), and GABA (nervous system inhibitor) may play a significant role in the pathophysiology of anxiety disorders. Furthermore, examining the role of inflammatory factors and the immune system in these disorders can contribute to a better understanding of the biological mechanisms underlying anxiety. Conclusion: Changes in the levels of certain biomarkers may contribute in the development of anxiety disorders and the exacerbation of their symptoms. However, further research is necessary to establish these markers as a more precise tool for the diagnosis, prediction, and treatment of anxiety disorders.
 
Keywords: Mental Disorders, Second Messenger Systems, Neurotransmitter Agents, Inflammation
Full-Text [PDF 846 kb]   (4 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. De Hert M, Detraux J, Vancampfort D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues in clinical neuroscience. 2018; 20 (1): 31-40 [DOI:10.31887/DCNS.2018.20.1/mdehert]
2. Mishra AK, Varma AR, Varma A. A comprehensive review of the generalized anxiety disorder. Cureus. 2023 S; 15 (9). [DOI:10.7759/cureus.46115]
3. Wideburg S, Voss C, Ollmann TM, Kische H, Pieper L, Beesdo-Baum K. The DSM-5 panic attack specifier as a severity indicator in mental disorders-Findings from a cross-sectional epidemiological study among adolescents and young adults. Journal of Affective Disorders Reports. 2024; 15: 100696. [DOI:10.1016/j.jadr.2023.100696]
4. Makoui RH, Fekri S, Ansari N, Makoui MH. Investigating the Co-Expression Rate of HER2 and HER3 Biomarkers in Cancer Patients: A Systematic Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention: APJCP. 2024; 25 (9): 2979. [DOI:10.31557/APJCP.2024.25.9.2979]
5. Gao L, Fan J, He J, Che X, Wang X, Han C. Small Nucleolar RNAs as Diagnostic and Prognostic Biomarkers in Cancer: A Systematic Review and Meta-Analysis. Technology in Cancer Research & Treatment. 2024 23: 15330338241245939. [DOI:10.1177/15330338241245939]
6. Dawson D, Dominic P, Sheth A, Modi M. Prognostic value of cardiac biomarkers in COVID-19 infection: a meta-analysis. Research square. 2020: rs-3. [DOI:10.21203/rs.3.rs-34729/v1]
7. Sheth A, Modi M, Dawson D, Dominic P. Prognostic value of cardiac biomarkers in COVID-19 infection. Scientific reports. 2021; 11 (1): 4930. [DOI:10.1038/s41598-021-84643-6]
8. Sánchez-Rosales AI, Guadarrama-Lopez AL, Gaona-Valle LS, Martinez-Carrillo BE, Valdes-Ramos R. The effect of dietary patterns on inflammatory biomarkers in adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2022; 14 (21): 4577. [DOI:10.3390/nu14214577]
9. Kim KY, Shin KY, Chang KA. GFAP as a potential biomarker for Alzheimer's disease: a systematic review and meta-analysis. Cells. 2023; 12 (9): 1309. [DOI:10.3390/cells12091309]
10. Tidman MM, White DR, White TA. Impact of a keto diet on symptoms of Parkinson's disease, biomarkers, depression, anxiety and quality of life: a longitudinal study. Neurodegenerative Disease Management. 2024: 1-14. [DOI:10.1080/17582024.2024.2352394]
11. Reay WR, Kiltschewskij DJ, Geaghan MP, Atkins JR, Carr VJ, Green MJ,et al. Genetic estimates of correlation and causality between blood-based biomarkers and psychiatric disorders. Science advances. 2022;8(14):eabj8969. [DOI:10.1126/sciadv.abj8969]
12. Strawn JR, Levine A. Treatment response biomarkers in anxiety disorders: From neuroimaging to neuronally-derived extracellular vesicles and beyond. Biomarkers in neuropsychiatry. 2020; 3: 100024. [DOI:10.1016/j.bionps.2020.100024]
13. Łoś K, Waszkiewicz N. Biological markers in anxiety disorders. Journal of clinical medicine. 2021; 10 (8): 1744. [DOI:10.3390/jcm10081744]
14. Szuhany KL, Simon NM. Anxiety disorders: a review. Jama. 2022; 328 (24): 2431-45. [DOI:10.1001/jama.2022.22744]
15. Hosseinpour H, Isazadegan A. Enhancing the Efficacy of Cognitive Behavioral Therapy with Attentional Bias Modification to Reduce Worry and Emotion Regulation Difficulties in Women with Generalized Anxiety Disorder. The Neuroscience Journal of Shefaye Khatam.
16. Abi‐Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, et al. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry. 2023; 22 (2): 236-62. [DOI:10.1002/wps.21078]
17. Tata JR. One hundred years of hormones: A new name sparked multidisciplinary research in endocrinology, which shed light on chemical communication in multicellular organisms. EMBO reports. 2005; 6 (6): 490-6. [DOI:10.1038/sj.embor.7400444]
18. Knezevic E, Nenic K, Milanovic V, Knezevic NN. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells. 2023; 12 (23): 2726. [DOI:10.3390/cells12232726]
19. Mohd Azmi NA, Juliana N, Azmani S, Mohd Effendy N, Abu IF, Mohd Fahmi Teng NI, et al. Cortisol on circadian rhythm and its effect on cardiovascular system. International journal of environmental research and public health. 2021;18 (2): 676. [DOI:10.3390/ijerph18020676]
20. Liu PY. Rhythms in cortisol mediate sleep and circadian impacts on health. Sleep. 2024; 47 (9): zsae151. [DOI:10.1093/sleep/zsae151]
21. de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Molecular psychiatry. 2024; 29 (1): 20-34. [DOI:10.1038/s41380-022-01934-8]
22. Elnazer HY, Baldwin DS. Investigation of cortisol levels in patients with anxiety disorders: a structured review. Behavioral neurobiology of stress-related disorders. 2014: 191-216. [DOI:10.1007/7854_2014_299]
23. Young ES, Doom JR, Farrell AK, Carlson EA, Englund MM, Miller GE, et al. Life stress and cortisol reactivity: An exploratory analysis of the effects of stress exposure across life on HPA-axis functioning. Development and psychopathology. 2021; 33 (1): 301-12. [DOI:10.1017/S0954579419001779]
24. Teo CH, Wong AC, Sivakumaran RN, Parhar I, Soga T. Gender differences in cortisol and cortisol receptors in depression: a narrative review. International journal of molecular sciences. 2023; 24 (8): 7129. [DOI:10.3390/ijms24087129]
25. Osmani H, Jaberi-Asl A, Rezapour R. Impact of Sleep Parameters on Job Stress Among Hospital Employees.
26. Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Frontiers in psychiatry. 2023;14:1130989. [DOI:10.3389/fpsyt.2023.1130989]
27. Esch T, Stefano GB, Fricchione GL, Benson H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinology letters. 2002;23(3):199-208.
28. Iqbal T, Elahi A, Wijns W, Shahzad A. Cortisol detection methods for stress monitoring in connected health. Health Sciences Review. 2023; 6: 100079. [DOI:10.1016/j.hsr.2023.100079]
29. Brinkman JE, Tariq MA, Leavitt L, Sharma S. Physiology, growth hormone. InStatPearls [Internet] 2023. StatPearls Publishing.
30. Ratku B, Sebestyén V, Erdei A, Nagy EV, Szabó Z, Somodi S. Effects of adult growth hormone deficiency and replacement therapy on the cardiometabolic risk profile. Pituitary. 2022; 25 (2): 211-28. [DOI:10.1007/s11102-022-01207-1]
31. Martel-Duguech L, Jorgensen JO, Korbonits M, Johannsson G, Webb SM. ESE audit on management of adult growth hormone deficiency in clinical practice. European journal of endocrinology. 2021; 184 (2): 321-32. [DOI:10.1530/EJE-20-1180]
32. van Bunderen CC, Olsson DS. Growth hormone deficiency and replacement therapy in adults: impact on survival. Reviews in Endocrine and Metabolic Disorders. 2021; 22 (1): 125-33. [DOI:10.1007/s11154-020-09599-w]
33. Yuen KC, Llahana S, Miller BS. Adult growth hormone deficiency: clinical advances and approaches to improve adherence. Expert review of endocrinology & metabolism. 2019; 14 (6): 419-36. [DOI:10.1080/17446651.2019.1689119]
34. Akaltun İ, Çayır A, Kara T, Ayaydın H. Is growth hormone deficiency associated with anxiety disorder and depressive symptoms in children and adolescents?: A case-control study. Growth Hormone & IGF Research. 2018; 41: 23-7. [DOI:10.1016/j.ghir.2018.06.001]
35. Dos Santos WO, Juliano VA, Chaves FM, Vieira HR, Frazao R, List EO, et al. Growth hormone action in somatostatin neurons regulates anxiety and fear memory. Journal of Neuroscience. 2023; 43 (40): 6816-29. [DOI:10.1523/JNEUROSCI.0254-23.2023]
36. Zaffanello M, Pietrobelli A, Cavarzere P, Guzzo A, Antoniazzi F. Complex relationship between growth hormone and sleep in children: insights, discrepancies, and implications. Frontiers in endocrinology. 2024; 14: 1332114. [DOI:10.3389/fendo.2023.1332114]
37. Nicholas LM, Tancer ME, Silva SG, Underwood LE, Stabler B. Short stature, growth hormone deficiency, and social anxiety. Biopsychosocial Science and Medicine. 1997;59 (4): 372-5. [DOI:10.1097/00006842-199707000-00006]
38. Algahtany M, Sharma S, Fahoum K, Jing R, Zhang S, Kovacs K, et al. The role of growth hormone in depression: A human model. Frontiers in Neuroscience. 2021; 15: 661819. [DOI:10.3389/fnins.2021.661819]
39. Kahn RS, Kalus O, Wetzler S, Van Praag HM. The role of serotonin in the regulation of anxiety. Role Of Serotonin In Psychiatric Disorders. 2023:129-60. [DOI:10.4324/9781315825861-6]
40. Zangrossi Junior H, Del-Ben CM, Graeff FG, Guimarães FS. Serotonin in panic and anxiety disorders. Handbook of the behavioral neurobiology of serotonin. 2020: 1042. [DOI:10.1016/B978-0-444-64125-0.00036-0]
41. Bandelow B, Baldwin DS. Chapter 22. Pharmacotherapy for Panic Disorder. InThe American Psychiatric Association Publishing Textbook of Anxiety, Trauma, and OCD-Related Disorders 2020 (pp. 385-398). [DOI:10.1176/appi.books.9781615379378.lg22]
42. Hao S, Shi W, Liu W, Chen QY, Zhuo M. Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. Frontiers in synaptic neuroscience. 2023; 15: 1122381. [DOI:10.3389/fnsyn.2023.1122381]
43. Arora V, Campbell JN, Chung MK. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacology & therapeutics. 2021; 220: 107743. [DOI:10.1016/j.pharmthera.2020.107743]
44. Nomoto S, Kinno R, Ochiai H, Kubota S, Mori Y, Futamura A, et al.The relationship between thyroid function and cerebral blood flow in mild cognitive impairment and Alzheimer's disease. PloS one. 2019; 14 (4): e0214676. [DOI:10.1371/journal.pone.0214676]
45. Zhao Y, Liu JC, Yu F, Yang LY, Kang CY, Yan LJ, et al.Gender differences in the association between anxiety symptoms and thyroid hormones in young patients with first-episode and drug naïve major depressive disorder. Frontiers in Psychiatry. 2023; 14: 1218551. [DOI:10.3389/fpsyt.2023.1218551]
46. Jalilvand M, Souri R, Solimanitabar M. The effectiveness of yoga exercises on anxiety and depression in patients with psoriasis. The Neuroscience Journal of Shefaye Khatam. 2021; 9 (2): 60-7. [DOI:10.52547/shefa.9.2.60]
47. Gunes NA. Evaluation of anxiety and depression in patients with thyroid function disorder. Revista da Associação Médica Brasileira. 2020; 66 (7): 979-85. [DOI:10.1590/1806-9282.66.7.979]
48. Lekurwale V, Acharya S, Shukla S, Kumar S. Neuropsychiatric Manifestations of Thyroid Diseases. Cureus. 2023; 15 (1): e33987. [DOI:10.7759/cureus.33987]
49. Medici M, Direk N, Visser WE, Korevaar TI, Hofman A, Visser TJ, et al. Thyroid function within the normal range and the risk of depression: a population-based cohort study. The Journal of Clinical Endocrinology & Metabolism. 2014; 99 (4): 1213-9. [DOI:10.1210/jc.2013-3589]
50. Hage MP, Azar ST. The link between thyroid function and depression. Journal of thyroid research. 2012; 2012 (1): 590648. [DOI:10.1155/2012/590648]
51. Fischer S, Ehlert U. Hypothalamic-pituitary-thyroid (HPT) axis functioning in anxiety disorders. A systematic review. Depression and anxiety. 2018; 35 (1): 98-110. [DOI:10.1002/da.22692]
52. Lee SY, Pearce EN. Hyperthyroidism: a review. Jama. 2023;330(15):1472-83. [DOI:10.1001/jama.2023.19052]
53. Shoib S, Ahmad J, Wani MA, Ullah I, Tarfarosh SF, Masoodi SR, et al. Depression and anxiety among hyperthyroid female patients and impact of treatment. Middle East Current Psychiatry. 2021; 28 (1): 26. [DOI:10.1186/s43045-021-00107-7]
54. Wojtas MN, Diaz-González M, Stavtseva N, Shoam Y, Verma P, Buberman A, et al. Interplay between hippocampal TACR3 and systemic testosterone in regulating anxiety-associated synaptic plasticity. Molecular Psychiatry. 2024; 29 (3): 686-703. [DOI:10.1038/s41380-023-02361-z]
55. Barone B, Napolitano L, Abate M, Cirillo L, Reccia P, Passaro F, et al. The role of testosterone in the elderly: what do we know?. International journal of molecular sciences. 2022; 23 (7) :3535. [DOI:10.3390/ijms23073535]
56. Hutschemaekers MH, de Kleine RA, Hendriks GJ, Kampman M, Roelofs K. The enhancing effects of testosterone in exposure treatment for social anxiety disorder: a randomized proof-of-concept trial. Translational Psychiatry. 2021; 11 (1): 432. [DOI:10.1038/s41398-021-01556-8]
57. Hutschemaekers MH, de Kleine RA, Kampman M, Smits JA, Roelofs K. Social avoidance and testosterone enhanced exposure efficacy in women with social anxiety disorder: A pilot investigation. Psychoneuroendocrinology. 2023; 158: 106372. [DOI:10.1016/j.psyneuen.2023.106372]
58. Krahel A, Paszynska E, Otulakowska-Skrzynska J, Rzatowski S, Hernik A, Slopien A, et al. Salivary biomarkers (opiorphin, cortisol, amylase, and IgA) related to age, sex, and stress perception in a prospective cohort of healthy schoolchildren. Mediators of Inflammation. 2021; 2021 (1) : 3639441. [DOI:10.1155/2021/3639441]
59. Szabo YZ, Slavish DC, Graham-Engeland JE. The effect of acute stress on salivary markers of inflammation: A systematic review and meta-analysis. Brain, behavior, and immunity. 2020; 88: 887-900. [DOI:10.1016/j.bbi.2020.04.078]
60. Špiljak B, Vilibić M, Glavina A, Crnković M, Šešerko A, Lugović-Mihić L. A review of psychological stress among students and its assessment using salivary biomarkers. Behavioral sciences. 2022;12 (10): 400. [DOI:10.3390/bs12100400]
61. Pearlmutter P, DeRose G, Samson C, Linehan N, Cen Y, Begdache L, et al. Sweat and saliva cortisol response to stress and nutrition factors. Scientific reports. 2020; 10 (1): 19050. [DOI:10.1038/s41598-020-75871-3]
62. Castro-Quintas A, Palma-Gudiel H, San Martin-Gonzalez N, Caso JR, Leza JC, Fananas L. Salivary secretory immunoglobulin A as a potential biomarker of psychosocial stress response during the first stages of life: A systematic review. Frontiers in Neuroendocrinology. 2023: 101083. [DOI:10.1016/j.yfrne.2023.101083]
63. Chojnowska S, Ptaszyńska-Sarosiek I, Kępka A, Knaś M, Waszkiewicz N. Salivary biomarkers of stress, anxiety and depression. Journal of clinical medicine. 2021; 10(3): 517. [DOI:10.3390/jcm10030517]
64. Wang L, Li XX, Chen X, Qin XY, Kardami E, Cheng Y. Antidepressant-like effects of low-and high-molecular weight FGF-2 on chronic unpredictable mild stress mice. Frontiers in molecular neuroscience. 2018; 11:377. [DOI:10.3389/fnmol.2018.00377]
65. Bryant EM, Richardson R, Graham BM. The association between salivary FGF2 and physiological and psychological components of the human stress response. Chronic Stress. 2022; 6: 24705470221114787. [DOI:10.1177/24705470221114787]
66. Paszynska E, Roszak M, Slopien A, Boucher Y, Dutkiewicz A, Tyszkiewicz-Nwafor M, et al. Is there a link between stress and immune biomarkers and salivary opiorphin in patients with a restrictive-type of anorexia nervosa?. The World Journal of Biological Psychiatry. 2020; 21 (3): 220-9. [DOI:10.1080/15622975.2019.1593502]
67. Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regeneration Research. 2023; 18 (6) :1165-78. [DOI:10.4103/1673-5374.357903]
68. de Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, Beguinot F, et al. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: a meta-analysis of preclinical studies. Implications for the treatment. Molecular Psychiatry. 2023; 28 (7): 2811-25. [DOI:10.1038/s41380-023-02065-4]
69. Mhanna A, Martini N, Hmaydoosh G, Hamwi G, Jarjanazi M, Zaifah G, et al.The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine. 2024;103 (5): e37114. [DOI:10.1097/MD.0000000000037114]
70. Liu X, Zhang Y, Wang Y, Qian T. Inflammatory response to spinal cord injury and its treatment. World neurosurgery. 2021; 155: 19-31. [DOI:10.1016/j.wneu.2021.07.148]
71. Baldwin D, Stein MB, Hermann R. Generalized anxiety disorder in adults: Epidemiology, pathogenesis, clinical manifestations, course, assessment, and diagnosis. UpToDate [Internet]. Waltham (MA): UpToDate. 2018.
72. Liu K. Study on the progress of three pathways in anxiety disorders. Transactions on Materials, Biotechnology and Life Sciences. 2024; 3: 539-47. [DOI:10.62051/b13xpe52]
73. Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochemical and Biophysical Research Communications. 2024:150218. [DOI:10.1016/j.bbrc.2024.150218]
74. Savage K, Sarris J, Hughes M, Bousman CA, Rossell S, Scholey A, et al. Neuroimaging insights: Kava's (Piper methysticum) effect on dorsal anterior cingulate cortex GABA in generalized anxiety disorder. Nutrients. 2023; 15 (21): 4586. [DOI:10.3390/nu15214586]
75. Ren L, Fan Y, Wu W, Qian Y, He M, Li X, et al. Anxiety disorders: Treatments, models, and circuitry mechanisms. European Journal of Pharmacology. 2024: 176994. [DOI:10.1016/j.ejphar.2024.176994]
76. Pallanti S, Zohar J, Kasper S, Möller HJ, Hollander E. Revisiting benzodiazepines (GABA Enhancers): a transdiagnostic and precision medicine approach. Journal of Psychiatric Research. 2024; 170: 65-72. [DOI:10.1016/j.jpsychires.2023.11.042]
77. Lydiard RB. The role of GABA in anxiety disorders. Journal of Clinical Psychiatry. 2003; 64: 21-7.
78. Phia WJ. The Role of GABA in Anxiety Disorders. Journal of Science & Technology. 2024; 5 (2): 21-7.
79. Gulias-Cañizo R, Ruíz-Leyja ED, Sánchez-Castillo H, Parodí J, Ochoa-de la Paz LD. The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology. Revista mexicana de neurociencia. 2021; 22 (2): 67-76. [DOI:10.24875/RMN.20000050]
80. Lin J, Ling F, Huang P, Chen M, Song M, Lu K, et al. The development of GABAergic network in depression in recent 17 years: A visual analysis based on CiteSpace and VOSviewer. Frontiers in Psychiatry. 2022; 13: 874137. [DOI:10.3389/fpsyt.2022.874137]
81. Carello-Collar G, Bellaver B, Ferreira PC, Ferrari-Souza JP, Ramos VG, Therriault J, et al. The GABAergic system in Alzheimer's disease: a systematic review with meta-analysis. Molecular Psychiatry. 2023; 28 (12): 5025-36. [DOI:10.1038/s41380-023-02140-w]
82. Czapski GA, Strosznajder JB. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer's disease. International Journal of Molecular Sciences. 2021; 22 (21): 11677. [DOI:10.3390/ijms222111677]
83. Hepsomali P, Groeger JA, Nishihira J, Scholey A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: A systematic review. Frontiers in neuroscience. 2020; 14: 559962. [DOI:10.3389/fnins.2020.00923]
84. Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Molecular psychiatry. 2021; 26 (1): 151-67. [DOI:10.1038/s41380-020-0727-3]
85. Sarawagi A, Soni ND, Patel AB. Glutamate and GABA homeostasis and neurometabolism in major depressive disorder. Frontiers in psychiatry. 2021; 12: 637863. [DOI:10.3389/fpsyt.2021.637863]
86. Hockenhull J, Amioka E, Black JC, Forber A, Haynes CM, Wood DM, et al. Non‐medical use of benzodiazepines and GABA analogues in Europe. British journal of clinical pharmacology. 2021; 87 (4): 1684-94. [DOI:10.1111/bcp.14537]
87. Goldschen-Ohm MP. Benzodiazepine modulation of GABAA receptors: A mechanistic perspective. Biomolecules. 2022; 12 (12): 1784. [DOI:10.3390/biom12121784]
88. Engin E. GABAA receptor subtypes and benzodiazepine use, misuse, and abuse. Frontiers in Psychiatry. 2023; 13: 1060949. [DOI:10.3389/fpsyt.2022.1060949]
89. Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate systems in DSM-5 anxiety disorders: their role and a review of glutamate and GABA psychopharmacology. Frontiers in psychiatry. 2020; 11: 548505. [DOI:10.3389/fpsyt.2020.548505]
90. Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Reviews in Endocrine and Metabolic Disorders. 2023; 24 (2): 251-66. [DOI:10.1007/s11154-022-09758-1]
91. Hjorth OR, Frick A, Gingnell M, Hoppe JM, Faria V, Hultberg S, et al. Expression and co-expression of serotonin and dopamine transporters in social anxiety disorder: a multitracer positron emission tomography study. Molecular psychiatry. 2021; 26(8): 3970-9. [DOI:10.1038/s41380-019-0618-7]
92. Dong MX, Chen GH, Hu L. Dopaminergic system alteration in anxiety and compulsive disorders: a systematic review of neuroimaging studies. Frontiers in neuroscience. 2020; 14: 608520. [DOI:10.3389/fnins.2020.608520]
93. Zarrindast MR, Khakpai F. The modulatory role of dopamine in anxiety-like behavior. Archives of Iranian medicine. 2015; 18(9).
94. Yang R, Ye S, Zhang S, Huang H, Zhang Y, Yang Y, et al.Serotonin and dopamine depletion in distinct brain regions may cause anxiety in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice as a model of early Parkinson's disease. Neuroreport. 2023; 34(11): 551-9. [DOI:10.1097/WNR.0000000000001922]
95. Hjorth OR, Frick A, Gingnell M, Hoppe JM, Faria V, Hultberg S, et al.Expectancy effects on serotonin and dopamine transporters during SSRI treatment of social anxiety disorder: a randomized clinical trial. Translational Psychiatry. 2021; 11(1): 559. [DOI:10.1038/s41398-021-01682-3]
96. Mata-Bermudez A, Trejo-Chávez R, Martínez-Vargas M, Pérez-Arredondo A, Martínez-Cardenas MD, Diaz-Ruiz A, et al. Dysregulation of the dopaminergic system secondary to traumatic brain injury: implications for mood and anxiety disorders. Frontiers in Neuroscience. 2024; 18: 1447688. [DOI:10.3389/fnins.2024.1447688]
97. Theron V, Harvey BH, Botha T, Weinshenker D, Wolmarans DW. Life-threatening, high-intensity trauma-and context-dependent anxiety in zebrafish and its modulation by epinephrine. Hormones and Behavior. 2023; 153: 105376. [DOI:10.1016/j.yhbeh.2023.105376]
98. Southwick SM, Bremner JD, Rasmusson A, Morgan III CA, Arnsten A, Charney DS. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biological psychiatry. 1999; 46(9): 1192-204. [DOI:10.1016/S0006-3223(99)00219-X]
99. Hosseini E, Tadayon Z. The effectiveness of drug therapy, relaxation and compound therapy on anxiety reduction, level of epinephrine and norepinephrine among patients with generalized anxiety disorder. Pars Journal of Medical Sciences. 2022; 10(4): 61-8. [DOI:10.29252/jmj.10.4.61]
100. Yang W, Xiao L, Yuan Z, Huang H, Xiang Y, Liu Z, et al. Anxiety and depression in patients with physical diseases and associated factors: a large-scale field survey in general hospitals in China. Frontiers in Psychiatry. 2021; 12: 689787. [DOI:10.3389/fpsyt.2021.689787]
101. Hu P, Lu Y, Pan BX, Zhang WH. New insights into the pivotal role of the amygdala in inflammation-related depression and anxiety disorder. International Journal of Molecular Sciences. 2022; 23(19): 11076. [DOI:10.3390/ijms231911076]
102. Won E, Kim YK. Neuroinflammation-associated alterations of the brain as potential neural biomarkers in anxiety disorders. International Journal of Molecular Sciences. 2020; 21(18): 6546. [DOI:10.3390/ijms21186546]
103. Kéri S, Kancsev A, Kelemen O. Algorithm-Based Modular Psychotherapy Alleviates Brain Inflammation in Generalized Anxiety Disorder. Life. 2024; 14(7): 887. [DOI:10.3390/life14070887]
104. Ye Z, Kappelmann N, Moser S, Smith GD, Burgess S, Jones PB, et al. Role of inflammation in depression and anxiety: Tests for disorder specificity, linearity and potential causality of association in the UK Biobank. EClinicalMedicine. 2021;38. [DOI:10.1016/j.eclinm.2021.100992]
105. Sabet HS, Sabet FS, Shojaei K, Yaghoubi F, Jafarian M. Biomarkers in Traumatic Brain Injury. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 133-53. [DOI:10.52547/shefa.11.1.133]
106. Liu P, Liu Z, Wang J, Wang J, Gao M, Zhang Y, et al. Immunoregulatory role of the gut microbiota in inflammatory depression. Nature communications. 2024; 15(1): 3003. [DOI:10.1038/s41467-024-47273-w]
107. Solmi M, Sharma MS, Osimo EF, Fornaro M, Bortolato B, Croatto G, et al. Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability. Brain, Behavior, and Immunity. 2021; 97: 193-203. [DOI:10.1016/j.bbi.2021.07.014]
108. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015; 49: 206-15. [DOI:10.1016/j.bbi.2015.06.001]
109. Daviu N, Bruchas MR, Moghaddam B, Sandi C, Beyeler A. Neurobiological links between stress and anxiety. Neurobiology of stress. 2019; 11: 100191. [DOI:10.1016/j.ynstr.2019.100191]
110. Saccaro L, Schilliger Z, Dayer A, Perroud N, Piguet C. Inflammation, anxiety, and stress in bipolar disorder and borderline personality disorder: A narrative review. Neuroscience & Biobehavioral Reviews. 2021; 127: 184-92. [DOI:10.1016/j.neubiorev.2021.04.017]
111. D'Alessio L, Korman GP, Sarudiansky M, Guelman LR, Scévola L, Pastore A, et al. Reducing allostatic load in depression and anxiety disorders: physical activity and yoga practice as add-on therapies. Frontiers in Psychiatry. 2020; 11: 520121. [DOI:10.3389/fpsyt.2020.00501]
112. Sepehrinezhad A, Momeni J, Gorji A, Sahab Negah S. Stress-induced immune dysfunction: implications for intrapersonal and interpersonal processes. Neurosci J Shefaye Khatam. 2020; 8: 93-106. [DOI:10.29252/shefa.8.2.93]
113. Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation-related functional and structural dysconnectivity as a pathway to psychopathology. Biological psychiatry. 2023; 93(5): 405-18. [DOI:10.1016/j.biopsych.2022.11.003]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4714