1. Willis AW, Roberts E, Beck JC, Fiske B, Ross W, Savica R, et al. Incidence of Parkinson disease in North America. NPJ Parkinsons Disease. 2022; 8: 170. [ DOI:10.1038/s41531-022-00410-y] 2. Tanner CM and Ostrem JL. Parkinson's Disease. The New England Journal of Medicine. 2024; 395(5): 442-52. [ DOI:10.1056/NEJMra2401857] 3. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. American Journal of Epidemiology. 2003; 157: 1015-022. [ DOI:10.1093/aje/kwg068] 4. GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology. 2018; 17: 939-53. 5. Rezaee Z, Marandi SM, Alaei H, Esfarjani F. Molecular mechanisms of Parkinson's disease. The Neuroscience Journal of Shefaye Khatam. 2019; 8 (1): 120-28. [ DOI:10.29252/shefa.8.1.120] 6. Takamiya A, Seki M, Kudo S, Yoshizaki T, Nakahara J, Mimura M, et al. Electroconvulsive therapy for Parkinson's disease: a systematic review and meta-analysis. Movement Disorders. 2021; 36: 50-8. [ DOI:10.1002/mds.28335] 7. Buhmann C, Wrobel N, Grashorn W, Fruendt O, Wesemann K, Diedrich S, et al. Pain in Parkinson disease: A cross-sectional survey of its prevalence, specifics, and therapy. Journal of Neurology. 2017; 264: 758-69. [ DOI:10.1007/s00415-017-8426-y] 8. Ryu DW, Han K, Cho A. Mortality and causes of death in patients with Parkinson's disease: a nationwide population-based cohort study. Frontis in Neurology. 2023; 14: 1-13. [ DOI:10.3389/fneur.2023.1236296] 9. Grigoletto J, Schechter M, Sharon R. Loss of Corticostriatal Mu-Opioid receptors in α-synuclein transgenic mouse brains. Life (Basel). 2022; 12(1): 63. [ DOI:10.3390/life12010063] 10. Nummenmaa L, Tuominen L. Opioid system and human emotions. British Journal of Pharmacology. 2018; 175(14): 2737-749. [ DOI:10.1111/bph.13812] 11. Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and exogenous opioids in pain. Annual Review of Neuroscience. 2018; 41(1): 453-73. [ DOI:10.1146/annurev-neuro-080317-061522] 12. Ribeiro SC, Kennedy SE, Smith YR, Stohler CS, Zubieta JK. Interface of physical and emotional stress regulation through the endogenous opioid system and mu-opioid receptors. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2005; 29(8): 1264-80. [ DOI:10.1016/j.pnpbp.2005.08.011] 13. Nummenmaa L, Karjalainen T, Isojärvi J, et al. Lowered endogenous mu-opioid receptor availability in subclinical depression and anxiety. Neuropsychopharmacology. 2020; 45(11): 1953-9. [ DOI:10.1038/s41386-020-0725-9] 14. Salemi M, Marchese G, Lanza G, Cosentino FII, Salluzzo MG, Schillaci FA, Ferri F. Role and dysregulation of miRNA in patients with Parkinson's disease. International Journal of Molecular. 2023; 24(1): 712. [ DOI:10.3390/ijms24010712] 15. Im YB, Jee MK. Choi JI, Cho HT, Kwon OH, Kang SK. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death and Disease. 2012; 3: e426. [ DOI:10.1038/cddis.2012.168] 16. Bjersing JL, Lundborg C, Bokarewa MI, Mannerkorpi K. Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One. 2013; 8. [ DOI:10.1371/journal.pone.0078762] 17. Cai M, Chai S, Xiong T, Wei J, Mao W, Zhu Y, et al. Aberrant expression of circulating microRNA leads to the dysregulation of alpha-synuclein and other pathogenic genes in Parkinson's disease. Frontiers in Cell and Developmental Biology. 2021; 9: 695007. [ DOI:10.3389/fcell.2021.695007] 18. Rodríguez RE. Morphine and microRNA activity: is there a relation with addiction? Frontiers in Genetics. 2012; 3: 223. [ DOI:10.3389/fgene.2012.00223] 19. Zahraei H, Mogharnasi M, Afzalpour ME, Fanaei H. The effect of 8 weeks of continuous and high intensity interval swimming on chemerin levels in liver and visceral fat tissues and insulin resistance in male rats with metabolic syndrome. Journal of Sport and Exercise Physiology. 2022; 15(1): 33-44. [ DOI:10.52547/joeppa.15.1.33] 20. Bayati M, Gharakhanlou R, Farzad B. Adaptations of physiological performance following high-intensity interval training. Sport Physiology. 2015; 7: 15-32. 21. Nagle EF, Sanders ME, Franklin BA. Aquatic high intensity interval training for cardiometabolic health: Benefits and training design. American Journal of Lifestyle Medicine. 2017; 11(1): 64-76. [ DOI:10.1177/1559827615583640] 22. Kosuru RY., Roy A., Das SK., Bera S. Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success? Molecular Nutrition & Food Research. 2018; 62(1): 1700699. [ DOI:10.1002/mnfr.201700699] 23. Reckziegel P, Dias VT, Benvegnú DM, Boufleur N, Barcelos RCS, Segat HJ, et al. Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicology Reports. 2016; 3: 351-36. [ DOI:10.1016/j.toxrep.2016.02.005] 24. Farbood Y, Sarkaki A, Hashemi S, Mansouri MT, Dianat M. The effects of gallic acid on pain and memory ollowing transient global ischemia/reperfusion in Wistar rats. Avicenna Journal of Phytomedicine. 2013; 3(4): 329-40. 25. Hubrecht R, Kirkwood J. UFAW Handbook on the care and management of laboratory and other research animals. 8th ed. Wiley-Blackwell Publishing Ltd; 2010; 460-520. [ DOI:10.1002/9781444318777] 26. Cesario V, Borlongan CV, Sanberg PR. Elevated body swing test: A new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. Journal of Neuroscience. 1995; 15(7): 5372-378. [ DOI:10.1523/JNEUROSCI.15-07-05372.1995] 27. Moradi S, Habibi AH, Tabande MR, Shakerian S. Comparison of nitric oxide changes in hippocampal tissue and pain sensation in male rats Parkinson's model following 6 weeks of continuous and intermittent training. Journal of Shahid Sadoughi University of Medical Sciences. 2020; 28(3): 2502-514. [ DOI:10.18502/ssu.v28i3.3747] 28. Abbasi M, Kordi M, Daryanoosh F. The effect of eight weeks of high-intensity interval swimming training on the expression of PGC-1α and IL-6 proteins and memory function in brain hippocampus in rats with non-alcoholic steatohepatitis induced by high fat diet. Journal of Applied Health Studies in Sport Physiology. 2023; In press. 29. Edalatmanesh MA, Samimi P. The effect of gallic acid on motor learning and cerebellar level of brain derived neurotrophic factor in a rat model of autism. Shafaye Khatam. 2018; 6(4): 5-13. [ DOI:10.29252/shefa.6.4.5] 30. Paudel KR, Das BP, Rauniar GP, Sangraula H, Deo S, Bhattacharya SK. Antinociceptive effect of amitriptyline in mice of acute pain models. Indian Journal of Experimental Biology. 2007; 45(6): 529-31. 31. Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nature Communications. 2023; 14(1): 944. [ DOI:10.1038/s41467-023-36625-7] 32. Santos AR, Duarte CB. Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. Journal of Neuroscience Research. 2008; 86(16): 3684-92. [ DOI:10.1002/jnr.21796] 33. Kim HJ, Na JI, Min BW, Na JY, Lee KH, Lee JH, et al. Evaluation of protein expression in housekeeping genes across multiple tissues in rats. Korean Journal of Pathology. 2014; 48(3): 193-200. [ DOI:10.4132/KoreanJPathol.2014.48.3.193] 34. Ching AS, Ahmad-Annuar A. U6 snRNA is a suitable endogenous control for microRNA-124 and-134 in cultured rat hippocampal neurons. Sains Malaysiana. 2015; 44(10): 1481-8. [ DOI:10.17576/jsm-2015-4410-14] 35. Harms AS, Ferreira SA. Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathology. 2021; 141: 527-45. [ DOI:10.1007/s00401-021-02268-5] 36. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology. 2022; 22: 657-73. [ DOI:10.1038/s41577-022-00684-6] 37. Szymura J, Kubica J, Wiecek M, Pera J. The immunomodulatory effects of systematic exercise in older adults and people with Parkinson's disease. Journal of Clinical Medicine. 2020; 9: 184. [ DOI:10.3390/jcm9010184] 38. Malczynska-Sims P, Chalimoniuk M, Wronski Z, Marusiak J, Sulek A. High-intensity interval training modulates inflammatory response in Parkinson's disease. Aging Clinical and Experimental Research. 2022; 34(9): 2165-176. [ DOI:10.1007/s40520-022-02153-5] 39. Rezaee Z, Marandi SM, Alaei H, Esfarjani F. The effect of exercise on Parkinson's disease. The Neuroscience Journal of Shefaye Khatam 2020; 9(1): 189-99. [ DOI:10.52547/shefa.9.1.189] 40. Zhou X, Spittau B, Krieglstein K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. Journal of Neuroinflammation. 2012; 9: 210. [ DOI:10.1186/1742-2094-9-210] 41. Chen X, Liu Z, Cao BB, Qiu YH, Peng YP. TGF-β1 Neuroprotection via inhibition of microglial activation in a rat model of Parkinson's disease. Journal of Neuroimmune Pharmacology. 2017; 12: 433-46. [ DOI:10.1007/s11481-017-9732-y] 42. Bazyar Y, Rafiei S. Hosseini A, Edalatmanesh MA. Effect of Endurance Exercise Training and Gallic Acid on Tumor Necrosis Factor-α in an Animal Model of Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2015; 3(3): 21-26. [ DOI:10.18869/acadpub.shefa.3.3.21] 43. Zhu X, Zhang A, Dong J, Yao Y, Zhu M, Xu K, Al Hamda MH. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Research Bulletin. 2019; 152(2019): 175-183. [ DOI:10.1016/j.brainresbull.2019.07.021] 44. Saanijoki T, Kantonen T, Pekkarinen L, Kalliokoski K, Hirvonen J, Malén T, et al. Aerobic fitness is associated with cerebral mu-opioid receptor activation in healthy humans. Medicine and Science in Sports and Exercise. 2022; 54(7): 1076-084. [ DOI:10.1249/MSS.0000000000002895] 45. Arida RM, Gomes da Silva S, de Almeida AA, Cavalheiro EA, Zavala‐Tecuapetla C, Brand S, et al. Differential effects of exercise on brain opioid receptor binding and activation in rats. Journal of neurochemistry. 2015; 132(2): 206-17. [ DOI:10.1111/jnc.12976] 46. Jafari H, Daryanoosh F, Zarifkar A, Ghiasi E, Mohammadi M. Effect of exercise on pain and morphine-induced analgesia in the formalin test in male mice. Journal of Rafsanjan University of Medical Sciences. 2014; 13 (1) :97-108. 47. Habibi-Asl B, Vaez H, Aghaie N, Hasanpour-Aghdam S, Parvizpur A, Chakhpur M, et al. Attenuation of morphine-induced tolerance and dependency by pretreatment with magnesium sulfate and amitriptyline in male mice. Pharmaceutical Sciences. 2015; 21(4): 192-98. [ DOI:10.15171/PS.2015.36]
|