[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 12، شماره 4 - ( پاییز 1403 ) ::
دوره 12 شماره 4 صفحات 32-22 برگشت به فهرست نسخه ها
اثرات پیشگیرانه تمرینات استقامتی و شناختی- حرکتی بر گیرنده محرک بیان‌ شده در سلول‌های میلوئید 2 و سطح سرمی اینترلوکین 33 در موش‌های صحرایی مبتلا به زوال عقل عروقی
زهرا مرگانی ، نجمه السادات شجاعیان*
گروه علوم ورزشی، دانشکده علوم انسانی، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران ، nshojaeian@yahoo.com
چکیده:   (305 مشاهده)
مقدمه: زوال عقل عروقی یک اختلال شناختی بوده که بر بیان گیرنده محرک بیان شده در سلول‌های میلوئید 2 و اینترلوکین 33 اثر می‌گذارد. پژوهش حاضر با هدف بررسی اثر پیشگیرانه تمرین استقامتی و تکلیف دوگانه شناختی- حرکتی بر بیان TREM2 و IL-33 در موش‌های صحرایی مبتلا به زوال عقل عروقی انجام شد. مواد و روشها: 40 سر موش صحرایی نر میانسال نژاد ویستار به صورت تصادفی در چهار گروه کنترل سالم، زوال عقل، تمرین استقامتی+زوال عقل و تکلیف دوگانه شناختی- حرکتی+ زوال عقل قرار گرفتند. موش‌های گروه تمرین استقامتی به دویدن پرداختند، در‌حالی‌که گروه تمرین شناختی- حرکتی به مدت 8 هفته در ماز آبی موریس شنا کردند. پس از مداخلات و ایجاد مدل زوال عقل عروقی از طریق انسداد 30 دقیقه‌ای شریان کاروتید مشترک، نمونه خون جمع‌آوری شد. سطح سرمی IL-33 با استفاده از روش الایزا اندازه گیری شد و بیان TREM2 بعد از استخراج هیپوکامپ، با استفاده از روش وسترن‌بلات بررسی شد. یافته‌ها: نتایج نشان میدهد که دو روش تمرینی به طور معنی‌داری بر مقدار TREM2 و IL-33 اثر داشته است (000/P=0). سطوح TREM2 در هر دو گروه تمرین نسبت به گروه کنترل به طور قابل توجهی بالاتر و در مقایسه با گروه زوال عقل به طور معنی‌داری کمتر بود (000/P=0). علاوه براین، سطح 33-IL در هر دو گروه تمرین نسبت به گروه کنترل به طور معنی‌داری بالاتر بوده (000/P=0) و تفاوت معنی‌داری بین گروه کنترل و زوال عقل عروقی مشاهده شد (001/P=0). نتیجه‌گیری: به‌نظر میرسد که تمرینات استقامتی و تکلیف دوگانه شناختی- حرکتی به حفظ غلظت مناسب TREM2 کمک کرده و به طور بالقوه از کاهش توانایی شناختی و عملکردی مرتبط با زوال عقل عروقی جلوگیری می‌کند. با‌این‌حال، هیچ تفاوت معنی‌داری در سطح IL-33 بین گروه‌های مختلف تمرین و گروه زوال عقل یافت نشد که نیاز به تحقیقات بیشتر در مورد نوع، شدت و تاثیر تمرین بر این متغیر را نشان می‌دهد.
 
واژه‌های کلیدی: تمرین، گیرنده‌های ایمونولوژیکی، اینترلوکین‌ها، بیماری‌های تحلیل‌‌برنده عصبی
متن کامل [PDF 1025 kb]   (133 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: نوروفيزيولوژي
فهرست منابع
1. Shi H, Dong C, Wang M, Liu R, Wang Y, Kan Z, et al. Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking. Annals of Translational Medicine. 2021; 9(2). [DOI:10.21037/atm-20-8165]
2. Zhao T, Chen S, Yuan L, Cai D. The therapeutical potential of Gabapentin combined withdioscorea opposita thunb extracts on a murine model of vascular dementia by modulating P2RX7 receptors. Farmacia Journal. 2022; 70(1): 70-5. [DOI:10.31925/farmacia.2022.1.11]
3. Roman GC. Defining dementia: clinical criteria for the diagnosis of vascular dementia. Acta Neurologica Scandinavia Supplementum. 2002; 106: 6-9. [DOI:10.1034/j.1600-0404.106.s178.2.x]
4. Zhu N, Liang X, Zhang M, Yin X, Yang H, Zhi Y, et al. Astaxanthin protects cognitive function of vascular dementia. Behavioral Brain Function. 2020; 16: 1-10. [DOI:10.1186/s12993-020-00172-8]
5. Schmitz M, Hermann P, Oikonomou P, Stoeck K, Ebert E, Poliakova T, et al. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiology of Aging. 2015; 36(9): 2597-606. [DOI:10.1016/j.neurobiolaging.2015.05.013]
6. Naderi A, Saremi A, Afarinesh khaki M reza. Comparison of twelve weeks of endurance and resistance exercise on the levels of acetylcholine and interleukin-1 beta in Alzheimer's male rats. The Neuroscience Journal of Shefaye Khatam. 2024; 12(3): 55-63. [DOI:10.61186/shefa.12.3.55]
7. Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Molecular Psychiatry. 2022; 27(2): 803-18. [DOI:10.1038/s41380-021-01361-1]
8. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Frontiers in Cellular Neuroscience. 2013; 7: 45. [DOI:10.3389/fncel.2013.00045]
9. Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, et al. Regulation of microglia phagocytosis and potential involvement of exercise. Frontiers in Cellular Neuroscience. 2022; 16: 953534. [DOI:10.3389/fncel.2022.953534]
10. Li Y, Jiang J, Tang Q, Tian H, Wang S, Wang Z, et al. Microglia TREM2: a potential role in the mechanism of action of electroacupuncture in an alzheimer's disease animal model. Neural Plasticity. 2020; 2020. [DOI:10.1155/2020/8867547]
11. Rauchmann B-S, Schneider-Axmann T, Alexopoulos P, Perneczky R, Initiative ADN. CSF soluble TREM2 as a measure of immune response along the Alzheimer's disease continuum. Neurobiology in Aging. 2019; 74: 182-90. [DOI:10.1016/j.neurobiolaging.2018.10.022]
12. Yang J, Fu Z, Zhang X, Xiong M, Meng L, Zhang Z. TREM2 ectodomain and its soluble form in Alzheimer's disease. Journal of Neuroinflammation. 2020; 17(1): 204. [DOI:10.1186/s12974-020-01878-2]
13. Wang Q, Yang W, Zhang J, Zhao Y, Xu Y. TREM2 overexpression attenuates cognitive deficits in experimental models of vascular dementia. Neural Plasticity. 2020; 2020. [DOI:10.1155/2020/8834275]
14. Vijayan M, Reddy PH. Stroke, vascular dementia, and Alzheimer's disease: molecular links. Journal of Alzheimer's Disease. 2016; 54(2): 427-43. [DOI:10.3233/JAD-160527]
15. Taylor X, Cisternas P, You Y, You Y, Xiang S, Marambio Y, et al. A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. Journal of Neuroinflammation. 2020; 17(1): 223. [DOI:10.1186/s12974-020-01900-7]
16. Satoh-Asahara N, Yamakage H, Tanaka M, Kawasaki T, Matsuura S, Tatebe H, et al. Soluble TREM2 and Alzheimer-related biomarker trajectories in the blood of patients with diabetes based on their cognitive status. Diabetes Research and Clinical Practice. 2022; 193: 110121. [DOI:10.1016/j.diabres.2022.110121]
17. Liew FY, Girard J-P, Turnquist HR. Interleukin-33 in health and disease. Nature Reviews Immunology. 2016; 16(11): 676-89. [DOI:10.1038/nri.2016.95]
18. Lau S-F, Fu AKY, Ip NY. Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease. Cellular and Mollecular Life Sciences. 2021; 78(10): 4703-12. [DOI:10.1007/s00018-021-03810-0]
19. Leiva-Valderrama JM, Montes-de-Oca-Garcia A, Opazo-Diaz E, Ponce-Gonzalez JG, Molina-Torres G, Velázquez-Díaz D, et al. Effects of High-Intensity Interval Training on Inflammatory Biomarkers in Patients with Type 2 Diabetes. A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(23). [DOI:10.3390/ijerph182312644]
20. Xie D, Liu H, Xu F, Su W, Ye Q, Yu F, et al. IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) Axis Drives Protective Microglial Responses and Promotes White Matter Integrity After Stroke. Stroke. 2021; 52(6): 2150-61. [DOI:10.1161/STROKEAHA.120.032444]
21. Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, et al. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. Journal of Translational Medicine. 2022; 20(1): 369. [DOI:10.1186/s12967-022-03570-w]
22. Nasiri F, Fathi M, kadkhodai M, Rezaei R, Bahrami A. Investigating Functional Independence, Balance, Walking, and Electromyographic Changes in Chronic Stroke Patients Under the Influence of Home-Based Exercises with Functional Overload. The Neuroscience Journal of Shefaye Khatam. 2024; 12(3): 1-9. [DOI:10.61186/shefa.12.3.1]
23. Habibi S, Abdi A, Saeid Fazelifar S. The Effect of Aerobic Training and Resveratrol on Ferroptosis in a Rat Model of Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2023; 11(4): 1-11. [DOI:10.61186/shefa.11.4.1]
24. Zhang L, Liu Y, Wang X, Wang D, Wu H, Chen H, et al. Treadmill exercise improve recognition memory by TREM2 pathway to inhibit hippocampal microglial activation and neuroinflammation in Alzheimer's disease model. Physiology & Behavior. 2022; 251: 113820. [DOI:10.1016/j.physbeh.2022.113820]
25. Liu Y, Liu S, Cai Y, Xie K, Zhang W, Zheng F. Effects of combined aerobic and resistance training on the glycolipid metabolism and inflammation levels in type 2 diabetes mellitus. Journal of Physical Therapy Science. 2015; 27(7): 2365-71. [DOI:10.1589/jpts.27.2365]
26. Zhang S, Zhu L, Peng Y, Zhang L, Chao F, Jiang L, et al. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. Journal of Neuroinflammation. 2022; 19(1): 34. [DOI:10.1186/s12974-022-02401-5]
27. Vedovelli K, Silveira E, Velho E, Stertz L, Kapczinski F, Schröder N, et al. Effects of increased opportunity for physical exercise and learning experiences on recognition memory and brain-derived neurotrophic factor levels in brain and serum of rats. Neuroscience. 2011; 199: 284-91. [DOI:10.1016/j.neuroscience.2011.08.012]
28. Hosseinpour S, Behpour N, Tadibi V, Ramezankhani A. Effect of Cognitive-motor Exercises on Physical Health and Cognitive Status in Elderly. Iranian Journal of Health Education and Health Promotion. 2018; 5(4): 336-44. [DOI:10.30699/acadpub.ijhehp.5.4.336]
29. Marusic U, Peskar M, Somen MM, Kalc M, Holobar A, Gramann K, et al. Neuromuscular assessment of force development, postural, and gait performance under cognitive-motor dual-tasking in healthy older adults and early Parkinson's disease patients: Study protocol for a cross-sectional Mobile Brain/Body Imaging (MoBI) study. Open Research Europe. 2023; 3(58). [DOI:10.12688/openreseurope.15781.1]
30. Sobol NA, Hoffmann K, Vogel A, Lolk A, Gottrup H, Høgh P, et al. Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer's disease. Aging Mental Health. 2016; 20(11): 1139-46. [DOI:10.1080/13607863.2015.1063108]
31. Sarhadi S, Shahidi F, Keshavarzi Z. The Effect of Exercise Cognitive Preconditioning on Ntrk2, Bcl2/Bax Ratio Gene Expression and Complications of Stroke. Sport Physiology. 2020; 11(44): 143-60.
32. Heidarpour S, Ghahramani M, Hosseinpour Delavar S. The effect of eight weeks of moderate-intensity endurance training on myocardial capillary density, ejection fraction and left ventricular shortening fraction in male rats with myocardial infarction. Jorjani Biomedicine Journal. 2020; 8(4): 34-41.
33. Bieber M, Gronewold J, Scharf A-C, Schuhmann MK, Langhauser F, Hopp S, et al. Validity and Reliability of Neurological Scores in Mice Exposed to Middle Cerebral Artery Occlusion. Stroke. 2019; 50(10): 2875-82. [DOI:10.1161/STROKEAHA.119.026652]
34. Naderi S, Ali Mohammadi R, Shamsi Zadeh A, Mobini M, Amin F, Allahtavakoli M. The effect of exercise preconditioning on stroke outcome in an experimental mice model. The Neuroscience Journal of Shefaye Khatam. 2015; 3(3): 45-53. [DOI:10.18869/acadpub.shefa.3.3.45]
35. Quan W, Qiao C-M, Niu G-Y, Wu J, Zhao L-P, Cui C, et al. Trimethylamine N-Oxide Exacerbates Neuroinflammation and Motor Dysfunction in an Acute MPTP Mice Model of Parkinson's Disease. Brain Sciences. 2023; 13(5): 790. [DOI:10.3390/brainsci13050790]
36. Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L, Heslegrave A, et al. Exercise as a potential modulator of inflammation in patients with Alzheimer's disease measured in cerebrospinal fluid and plasma. Experimental Gerontology. 2019; 121: 91-8. [DOI:10.1016/j.exger.2019.04.003]
37. Winn NC, Wolf EM, Garcia JN HA. Trem2 deficiency does not worsen metabolic function in diet-induced obese mice. bioRxiv. 2022; 2022-06. [DOI:10.1101/2022.06.13.495953]
38. Xu J, Zhang L, Li M, He X, Luo J, Wu R, et al. TREM2 mediates physical exercise-promoted neural functional recovery in rats with ischemic stroke via microglia-promoted white matter repair. Journal of Neuroinflammation. 2023; 20(1): 1-18. [DOI:10.1186/s12974-023-02741-w]
39. Zhang L, Yang X, Yin M, Yang H, Li L, Parashos A, et al. An Animal Trial on the Optimal Time and Intensity of Exercise after Stroke. Medicine and Science in Sports and Exercise. 2020; 52(8): 1699-709. [DOI:10.1249/MSS.0000000000002318]
40. Rahimi M, Nameni F. Effects of Endurance Training and Adenosine on the Expression of the A2B Gene on the Ischemic-Reperfusion Model of the Male Rat Brain. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 79-89. [DOI:10.52547/shefa.9.1.79]
41. Moca EN, Lecca D, Hope KT, Etienne F, Schaler AW, Espinoza K, et al. Microglia drive pockets of neuroinflammation in middle age. Journal of Neuroscience. 2022; 42(19): 3896-918. [DOI:10.1523/JNEUROSCI.1922-21.2022]
42. Naderi L, Banaei Borojeni J, Kargarfard M, Keshavarz S. The Effects of High-Intensity Interval Training on Suppression of Tumorigenicity 2 and Interleukin-33 in Women with Type 2 Diabetes. Razi Journal of Medical Sciences. 2022; 29 (3): 49-58.
43. Raygan F, Sayyah M, Qamsari SMRJ, Nikoueinejad H, Sehat M. Effects of submaximal aerobic exercise on regulatory T cell markers of male patients suffering from ischemic heart disease. Iranian Journal of Allergy, Asthma Immunology. 2017; 14-20.
44. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. Journal of American Medical Directors Association. 2013; 14(12): 877-82. [DOI:10.1016/j.jamda.2013.05.009]
45. Ryan N, Anderson K, Volpedo G, Varikuti S, Satoskar M, Satoskar S, et al. The IL-33/ST2 axis in immune responses against parasitic disease: potential therapeutic applications. Frontiers Cellular Infection Microbiology. 2020; 10: 153. [DOI:10.3389/fcimb.2020.00153]
46. Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. Journal of Alzheimer's Disease. 2014; 40(2): 297-308. [DOI:10.3233/JAD-132081]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Margani Z, Shojaeian N A. Preventive Effects of Endurance and Cognitive-Motor Training on TREM2 Expression and IL-33 Levels in Vascular Dementia Rats. Shefaye Khatam 2024; 12 (4) :22-32
URL: http://shefayekhatam.ir/article-1-2541-fa.html

مرگانی زهرا، شجاعیان نجمه السادات. اثرات پیشگیرانه تمرینات استقامتی و شناختی- حرکتی بر گیرنده محرک بیان‌ شده در سلول‌های میلوئید 2 و سطح سرمی اینترلوکین 33 در موش‌های صحرایی مبتلا به زوال عقل عروقی. مجله علوم اعصاب شفای خاتم. 1403; 12 (4) :22-32

URL: http://shefayekhatam.ir/article-1-2541-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 4 - ( پاییز 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.15 seconds with 51 queries by YEKTAWEB 4704