[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Articles In Press ::
Back to the articles list Back to browse issues page
The Role of Microglia in the Pathophysiology of Post-Traumatic Stress Disorder
Amir mohamad Behzad Basirat , Faezeh Yaghoubi , Nafiseh Hadei , Fatemeh Davoodi-Dehaghani , Zahra Behzad Basirat * , Batool Mousavi
Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran , behzad.zb77@gmail.com
Abstract:   (26 Views)
Introduction: The role of immune activation in psychiatric disorders has attracted considerable attention in the past two decades and has become the beginning of a new era for the treatment of psychiatric diseases. Neuroinflammation has been recognized as a key mechanism in the onset and progression of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. In addition, chronic inflammation caused by immune cells, especially microglia, plays a significant role in many psychiatric diseases such as autism, chronic stress, anxiety disorders, and posttraumatic stress disorder (PTSD). Epidemiological studies have demonstrated that PTSD is significantly associated with an increased risk of diseases characterized by immune dysregulation and chronic neuroinflammation, often induced by microglial activation and excessive production of inflammatory cytokines. In this regard, several studies have reported that individuals with PTSD exhibit elevated levels of proinflammatory markers, such as interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and C-reactive protein compared to healthy subjects. Neuroinflammation is not only associated with PTSD, but may also play an important role in its pathogenesis and pathophysiology. Microglia, as innate immune cells in the brain, play an important role in maintaining the homeostasis of the central nervous system. However, excessive activation of neurotoxic microglia leads to neuroinflammation, resulting in damage to healthy brain tissue. Consequently, understanding microglial function provides a promising avenue for the treatment of psychiatric disorders, such as PTSD. Conclusion: This review article describes the role of microglial pathophysiology in the development and progression of PTSD, with a focus on neuroinflammatory mechanisms.
 
Keywords: Neuroinflammatory Diseases, Central Nervous System, Mental Disorders, Cytokines
Full-Text [PDF 663 kb]   (7 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Yang I, Han SJ, Kaur G, Crane C, Parsa AT. The role of microglia in central nervous system immunity and glioma immunology. Journal of clinical neuroscience. 2010; 17(1): 6-10. [DOI:10.1016/j.jocn.2009.05.006]
2. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012; 336(6077): 86-90. [DOI:10.1126/science.1219179]
3. Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Frontiers in Neurology. 2023; 14: 1103416. [DOI:10.3389/fneur.2023.1103416]
4. Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HL. Role of microglia in neurological disorders and their potentials as a therapeutic target. Molecular neurobiology. 2017; 54(10): 7567-84. [DOI:10.1007/s12035-016-0245-0]
5. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Frontiers in cellular neuroscience. 2018; 12: 488. [DOI:10.3389/fncel.2018.00488]
6. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Developmental Brain Research. 1999; 117(2): 145-52. [DOI:10.1016/S0165-3806(99)00113-3]
7. Pont‐Lezica L, Béchade C, Belarif‐Cantaut Y, Pascual O, Bessis A. Physiological roles of microglia during development. Journal of neurochemistry. 2011; 119(5): 901-8. [DOI:10.1111/j.1471-4159.2011.07504.x]
8. Gordon J, Amini S. General overview of neuronal cell culture. Neuronal Cell Culture: Methods and Protocols. 2021: 1-8. [DOI:10.1007/978-1-0716-1437-2_1]
9. Teleanu RI, Niculescu A-G, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters key factors in neurological and neurodegenerative disorders of the central nervous system. International journal of molecular sciences. 2022; 23(11): 5954. [DOI:10.3390/ijms23115954]
10. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6): 7204. [DOI:10.18632/oncotarget.23208]
11. Özdemir S. Inflammation: Complexity and significance of cellular and molecular responses. Journal of Acute Disease. 2024 ; 13(1): 3-7. [DOI:10.4103/jad.jad_129_23]
12. Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Frontiers in Aging Neuroscience. 2024; 16: 1347987. [DOI:10.3389/fnagi.2024.1347987]
13. Niranjan R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochemistry international. 2018; 120: 13-20. [DOI:10.1016/j.neuint.2018.07.003]
14. Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and macrophages in the pathological central and peripheral nervous systems. Cells. 2020; 9(9): 2132. [DOI:10.3390/cells9092132]
15. Xiong X-Y, Liu L, Yang Q-W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Progress in neurobiology. 2016; 142: 23-44. [DOI:10.1016/j.pneurobio.2016.05.001]
16. Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, et al. Microglia in Alzheimer's disease: Pathogenesis, mechanisms, and therapeutic potentials. Frontiers in aging neuroscience. 2023; 15: 1201982. [DOI:10.3389/fnagi.2023.1201982]
17. Anwar S, Rivest S. Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert opinion on therapeutic targets. 2020; 24(4): 331-44. [DOI:10.1080/14728222.2020.1738391]
18. Basharpoor S, Einy S. The effectiveness of mentalization-based therapy on emotional dysregulation and impulsivity in veterans with post-traumatic stress disorder. The Neuroscience Journal of Shefaye Khatam. 2020; 8(3): 10-9. [DOI:10.29252/shefa.8.3.10]
19. Sarhadi S, Ghaemi F, Dortaj F, Delavar A. Comparison of the Effectiveness of Sertraline, Transcranial Direct Stimulation Current and their Combination on Post-Traumatic Stress Disorder in Veterans. The Neuroscience Journal of Shefaye Khatam. 2019; 8(1): 51-62. [DOI:10.29252/shefa.8.1.51]
20. Cooper R. Diagnostic and statistical manual of mental disorders (DSM). Ko Knowledge Organization. 2018 ;44(8): 668-76. [DOI:10.5771/0943-7444-2017-8-668]
21. Khateri S, Soroush M, Mokhber N, Sedighimoghaddam M, Modirian E, Mousavi B, et al. Mental health status following severe sulfur mustard exposure: a long‐term study of Iranian war survivors. Asia‐Pacific Psychiatry. 2017; 9(2): e12252. [DOI:10.1111/appy.12252]
22. Hines LA, Sundin J, Rona RJ, Wessely S, Fear NT. Posttraumatic stress disorder post Iraq and Afghanistan: prevalence among military subgroups. The Canadian Journal of Psychiatry. 2014; 59(9): 468-79. [DOI:10.1177/070674371405900903]
23. Dursa EK, Reinhard MJ, Barth SK, Schneiderman AI. Prevalence of a positive screen for PTSD among OEF/OIF and OEF/OIF‐era veterans in a large population‐based cohort. Journal of traumatic stress. 2014; 27(5): 542-9. [DOI:10.1002/jts.21956]
24. Bookwalter DB, Roenfeldt KA, LeardMann CA, Kong SY, Riddle MS, Rull RP. Posttraumatic stress disorder and risk of selected autoimmune diseases among US military personnel. BMC psychiatry. 2020; 20: 1-8. [DOI:10.1186/s12888-020-2432-9]
25. Bisson J, Andrew M. Psychological treatment of post‐traumatic stress disorder (PTSD). Cochrane database of systematic reviews. 2007(3). [DOI:10.1002/14651858.CD003388.pub3]
26. Rose SC, Bisson J, Churchill R, Wessely S, Group CCMD. Psychological debriefing for preventing post traumatic stress disorder (PTSD). Cochrane database of systematic reviews. 1996; 2010(1).
27. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical therapeutics. 2015 ;37(5): 984-95. [DOI:10.1016/j.clinthera.2015.04.002]
28. Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New Metabolic, Digestive, and Oxidative Stress‐Related Manifestations Associated with Posttraumatic Stress Disorder. Oxidative Medicine and Cellular Longevity. 2021; 2021(1): 5599265. [DOI:10.1155/2021/5599265]
29. Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain, behavior, and immunity. 2023 1; 114: 360-70. [DOI:10.1016/j.bbi.2023.09.005]
30. Tam WY, Ma CHE. Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Scientific reports. 2014; 4(1): 7279. [DOI:10.1038/srep07279]
31. Lier J, Streit WJ, Bechmann I. Beyond activation: characterizing microglial functional phenotypes. Cells. 2021; 10(9): 2236. [DOI:10.3390/cells10092236]
32. Eggen BJ, Raj D, Hanisch U-K, Boddeke HW. Microglial phenotype and adaptation. Journal of Neuroimmune Pharmacology. 2013; 8: 807-23. [DOI:10.1007/s11481-013-9490-4]
33. Luo X-G, Chen S-D. The changing phenotype of microglia from homeostasis to disease. Translational neurodegeneration. 2012; 1: 1-13. [DOI:10.1186/2047-9158-1-9]
34. Leyh J, Paeschke S, Mages B, Michalski D, Nowicki M, Bechmann I, et al. Classification of microglial morphological phenotypes using machine learning. Frontiers in cellular neuroscience. 2021; 15: 701673. [DOI:10.3389/fncel.2021.701673]
35. Zhou L, Wang D, Qiu X, Zhang W, Gong Z, Wang Y, et al. DHZCP modulates microglial M1/M2 polarization via the p38 and TLR4/NF-κB signaling pathways in LPS-stimulated microglial cells. Frontiers in Pharmacology. 2020; 11: 1126. [DOI:10.3389/fphar.2020.01126]
36. Topf MC, Tuluc M, Harshyne LA, Luginbuhl A. Macrophage type 2 differentiation in a patient with laryngeal squamous cell carcinoma and metastatic prostate adenocarcinoma to the cervical lymph nodes. Journal for ImmunoTherapy of Cancer. 2017; 5: 1-5. [DOI:10.1186/s40425-017-0264-z]
37. Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires‐Afonso Y, Martina S, et al. Single‐cell transcriptomics reveals distinct inflammation‐induced microglia signatures. EMBO reports. 2018; 19(11): e46171. [DOI:10.15252/embr.201846171]
38. Vidal-Itriago A, Radford RA, Aramideh JA, Maurel C, Scherer NM, Don EK, et al. Microglia morphophysiological diversity and its implications for the CNS. Frontiers in immunology. 2022; 13: 997786. [DOI:10.3389/fimmu.2022.997786]
39. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Frontiers in aging neuroscience. 2022; 14: 815347. [DOI:10.3389/fnagi.2022.815347]
40. Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Frontiers in neuroscience. 2021; 15: 742065. [DOI:10.3389/fnins.2021.742065]
41. Matejuk A, Ransohoff RM. Crosstalk between astrocytes and microglia: an overview. Frontiers in immunology. 2020; 11: 1416. [DOI:10.3389/fimmu.2020.01416]
42. Liu L-r, Liu J-c, Bao J-s, Bai Q-q, Wang G-q. Interaction of microglia and astrocytes in the neurovascular unit. Frontiers in immunology. 2020; 11: 1024. [DOI:10.3389/fimmu.2020.01024]
43. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia. Physiological reviews. 2011; 91(2): 461-553. [DOI:10.1152/physrev.00011.2010]
44. Cornell J, Salinas S, Huang H-Y, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural regeneration research. 2022; 17(4): 705-16. [DOI:10.4103/1673-5374.322423]
45. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. Role of microglia in central nervous system infections. Clinical microbiology reviews. 2004; 17(4): 942-64. [DOI:10.1128/CMR.17.4.942-964.2004]
46. Xu Y, Jin M-Z, Yang Z-Y, Jin W-L. Microglia in neurodegenerative diseases. Neural Regeneration Research. 2021; 16(2): 270-80. [DOI:10.4103/1673-5374.290881]
47. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annual review of immunology. 2017; 35(1): 441-68. [DOI:10.1146/annurev-immunol-051116-052358]
48. Lenz KM, Nelson LH. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Frontiers in immunology. 2018; 9: 698. [DOI:10.3389/fimmu.2018.00698]
49. Ulland TK, Colonna M. TREM2-a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology. 2018; 14(11): 667-75. [DOI:10.1038/s41582-018-0072-1]
50. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal transduction and targeted therapy. 2023; 8(1): 359. [DOI:10.1038/s41392-023-01588-0]
51. Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational neurodegeneration. 2020; 9(1): 42. [DOI:10.1186/s40035-020-00221-2]
52. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z, et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature neuroscience. 2018; 21(4): 541-51. [DOI:10.1038/s41593-018-0100-x]
53. Soluki M, Mahmoudi F, Abdolmaleki A. Therapeutic factors in ischemic stroke control. The Neuroscience Journal of Shefaye Khatam. 2022; 10(4): 77-91. [DOI:10.52547/shefa.10.4.77]
54. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology. 2015; 14(4): 388-405. [DOI:10.1016/S1474-4422(15)70016-5]
55. Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert opinion on drug metabolism & toxicology. 2008; 4(10): 1265-77. [DOI:10.1517/17425255.4.10.1265]
56. Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain research bulletin. 2012; 87(1): 10-20. [DOI:10.1016/j.brainresbull.2011.10.004]
57. Brown M, Worrell C, Pariante CM. Inflammation and early life stress: An updated review of childhood trauma and inflammatory markers in adulthood. Pharmacology Biochemistry and Behavior. 2021; 211: 173291. [DOI:10.1016/j.pbb.2021.173291]
58. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular psychiatry. 2016; 21(5): 642-9. [DOI:10.1038/mp.2015.67]
59. Nia HS, Ebadi A, Lehto RH, Mousavi B, Peyrovi H, Chan YH. Reliability and validity of the persian version of templer death anxiety scale-extended in veterans of Iran-Iraq warfare. Iranian journal of psychiatry and behavioral sciences. 2014; 8(4): 29.
60. Sei Y, Vitkoviç L, Yokoyama M. Cytokines in the central nervous system: regulatory roles in neuronal function, cell death and repair. Neuroimmunomodulation. 1995 Jan 3; 2(3). [DOI:10.1159/000096881]
61. Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007; 146(3): 1388-99. [DOI:10.1016/j.neuroscience.2007.02.043]
62. Frank MG, Thompson BM, Watkins LR, Maier SF. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain, behavior, and immunity. 2012; 26(2): 337-45. [DOI:10.1016/j.bbi.2011.10.005]
63. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016; 233: 1637-50. [DOI:10.1007/s00213-016-4218-9]
64. Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiology of learning and memory. 2014; 112: 17-29. [DOI:10.1016/j.nlm.2013.09.017]
65. Butler RK, Finn DP. Stress-induced analgesia. Progress in neurobiology. 2009; 88(3): 184-202. [DOI:10.1016/j.pneurobio.2009.04.003]
66. Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, et al. Corticotropin-releasing hormone, microglia and mental disorders. International journal of immunopathology and pharmacology. 2014; 27(2): 163-7. [DOI:10.1177/039463201402700203]
67. Wang W, Ji P, Riopelle RJ, Dow KE. Functional expression of corticotropin‐releasing hormone (CRH) receptor 1 in cultured rat microglia. Journal of neurochemistry. 2002; 80(2): 287-94. [DOI:10.1046/j.0022-3042.2001.00687.x]
68. Schramm E, Waisman A. Microglia as central protagonists in the chronic stress response. Neurology: Neuroimmunology & Neuroinflammation. 2022; 9(6): e200023. [DOI:10.1212/NXI.0000000000200023]
69. Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. Journal of neuroinflammation. 2012; 9: 1-14. [DOI:10.1186/1742-2094-9-260]
70. Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, Maeda N. Glucocorticoid‐and mineralocorticoid receptors in microglial cells: The two receptors mediate differential effects of corticosteroids. Glia. 1997; 20(1): 23-37. https://doi.org/10.1002/(SICI)1098-1136(199705)20:1<23::AID-GLIA3>3.0.CO;2-6 [DOI:10.1002/(SICI)1098-1136(199705)20:13.0.CO;2-6]
71. Carrillo-de Sauvage MÁ, Maatouk L, Arnoux I, Pasco M, Sanz Diez A, Delahaye M, et al. Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death & Differentiation. 2013; 20(11): 1546-57. [DOI:10.1038/cdd.2013.108]
72. Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. Journal of neuroimmunology. 2006; 171(1-2): 72-85. [DOI:10.1016/j.jneuroim.2005.09.012]
73. Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. Journal of neuroinflammation. 2022; 19(1): 132. [DOI:10.1186/s12974-022-02492-0]
74. Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. Journal of Neuroinflammation. 2023; 20(1): 223. [DOI:10.1186/s12974-023-02901-y]
75. Hartmann S-M, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Frontiers in Cellular Neuroscience. 2024; 18: 1345349. [DOI:10.3389/fncel.2024.1345349]
76. Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron glia biology. 2011; 7(2-4): 205-13. [DOI:10.1017/S1740925X12000142]
77. Sun Y, Qu Y, Zhu J. The relationship between inflammation and post-traumatic stress disorder. Frontiers in Psychiatry. 2021; 12: 707543. [DOI:10.3389/fpsyt.2021.707543]
78. Hori H, Kim Y. Inflammation and post‐traumatic stress disorder. Psychiatry and clinical neurosciences. 2019; 73(4): 143-53. [DOI:10.1111/pcn.12820]
79. Lee D-H, Lee J-Y, Hong D-Y, Lee E-C, Park S-W, Lee M-R, et al. Neuroinflammation in post-traumatic stress disorder. Biomedicines. 2022; 10(5): 953. [DOI:10.3390/biomedicines10050953]
80. Salari S, Bagheri M. Advancements and Challenges in Preclinical Study Models of Neurodegenerative Brain Diseases: Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024; 12(4): 81-96. [DOI:10.61186/shefa.12.4.81]
81. Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Experimental neurology. 2016; 275: 316-27. [DOI:10.1016/j.expneurol.2015.08.018]
82. Al-Onaizi M, Al-Khalifah A, Qasem D, ElAli A. Role of microglia in modulating adult neurogenesis in health and neurodegeneration. International journal of molecular sciences. 2020; 21(18): 6875. [DOI:10.3390/ijms21186875]
83. Justice NJ, Huang L, Tian J-B, Cole A, Pruski M, Hunt AJ, et al. Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. Journal of Neuroscience. 2015; 35(6): 2612-23. [DOI:10.1523/JNEUROSCI.3333-14.2015]
84. De Kloet C, Vermetten E, Geuze E, Lentjes E, Heijnen C, Stalla G, et al. Elevated plasma corticotrophin-releasing hormone levels in veterans with posttraumatic stress disorder. Progress in brain research. 2007; 167: 287-91. [DOI:10.1016/S0079-6123(07)67025-3]
85. Dieter JN, Engel SD. Traumatic brain injury and posttraumatic stress disorder: comorbid consequences of war. Neuroscience insights. 2019; 14: 1179069519892933. [DOI:10.1177/1179069519892933]
86. Bahraini NH, Breshears RE, Hernández TD, Schneider AL, Forster JE, Brenner LA. Traumatic brain injury and posttraumatic stress disorder. Psychiatric Clinics. 2014; 37(1): 55-75. [DOI:10.1016/j.psc.2013.11.002]
87. Kim TD, Lee S, Yoon S. Inflammation in post-traumatic stress disorder (PTSD): a review of potential correlates of PTSD with a neurological perspective. Antioxidants. 2020; 9(2): 107. [DOI:10.3390/antiox9020107]
88. Kim Y-K, Amidfar M, Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Progress in Neuro-psychopharmacology and biological Psychiatry. 2019; 91: 103-12. [DOI:10.1016/j.pnpbp.2018.06.008]
89. Brás JP, Bravo J, Freitas J, Barbosa MA, Santos SG, Summavielle T, et al. TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell death & disease. 2020; 11(6): 415. [DOI:10.1038/s41419-020-2626-6]
90. Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of μ‐opioid receptor potentiates LPS‐induced NF‐kB promoting an inflammatory phenotype in microglia. FEBS letters. 2016; 590(17): 2813-26. [DOI:10.1002/1873-3468.12313]
91. Rhie SJ, Jung E-Y, Shim I. The role of neuroinflammation on pathogenesis of affective disorders. Journal of exercise rehabilitation. 2020; 16(1): 2. [DOI:10.12965/jer.2040016.008]
92. Khairova RA, Machado-Vieira R, Du J, Manji HK. A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. International Journal of Neuropsychopharmacology. 2009; 12(4): 561-78. [DOI:10.1017/S1461145709009924]
93. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013; 246: 199-229. [DOI:10.1016/j.neuroscience.2013.04.060]
94. Doroszkiewicz J, Groblewska M, Mroczko B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. International Journal of Molecular Sciences. 2022; 23(9): 4610. [DOI:10.3390/ijms23094610]
95. Wang W, Wang R, Xu J, Qin X, Jiang H, Khalid A, et al. Minocycline attenuates stress-induced behavioral changes via its anti-inflammatory effects in an animal model of post-traumatic stress disorder. Frontiers in psychiatry. 2018; 9: 558. [DOI:10.3389/fpsyt.2018.00558]
96. Gerges MA, Abdel-Kareem AO, El-Nimr SA, Abd-Elhamid N, Metwally WS. An Overview about Nuclear Factor Kappa B. NeuroQuantology. 2022; 20(11): 8259.
97. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal transduction and targeted therapy. 2017; 2(1): 1-9. [DOI:10.1038/sigtrans.2017.23]
98. Al-Hasnawi HNG, Pouresmaeil V, Davoodi-Dehaghani F, Rahban S, Pouresmaeil A, Homayouni Tabrizi M. Synthesis folate-linked chitosan-coated quetiapine/BSA nano-carriers as the efficient targeted anti-cancer drug delivery system. Molecular Biotechnology. 2024; 66(9): 2297-307. [DOI:10.1007/s12033-023-00858-0]
99. Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, et al. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Translational Psychiatry. 2024; 14(1): 209. [DOI:10.1038/s41398-024-02928-6]
100. Gupta S, Guleria RS. Involvement of nuclear factor-κB in inflammation and neuronal plasticity associated with post-traumatic stress disorder. Cells. 2022; 11(13): 2034. [DOI:10.3390/cells11132034]
101. Pace TW, Wingenfeld K, Schmidt I, Meinlschmidt G, Hellhammer DH, Heim CM. Increased peripheral NF-κB pathway activity in women with childhood abuse-related posttraumatic stress disorder. Brain, behavior, and immunity. 2012; 26(1): 13-7. [DOI:10.1016/j.bbi.2011.07.232]
102. Jones ME, Lebonville CL, Barrus D, Lysle DT. The role of brain interleukin-1 in stress-enhanced fear learning. Neuropsychopharmacology. 2015; 40(5): 1289-96. [DOI:10.1038/npp.2014.317]
103. Jones ME, Lebonville CL, Paniccia JE, Balentine ME, Reissner KJ, Lysle DT. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for astrocyte-derived interleukin-1β. Brain, Behavior, and Immunity. 2018; 67: 355-63. [DOI:10.1016/j.bbi.2017.09.016]
104. Torres-Rodríguez O, Rivera-Escobales Y, Castillo-Ocampo Y, Velazquez B, Colón M, Porter JT. Purinergic P2X7 receptor-mediated inflammation precedes PTSD-related behaviors in rats. Brain, behavior, and immunity. 2023; 110: 107-18. [DOI:10.1016/j.bbi.2023.02.015]
105. Lai S, Wu G, Jiang Z. Glycyrrhizin treatment facilitates extinction of conditioned fear responses after a single prolonged stress exposure in rats. Cellular Physiology and Biochemistry. 2018; 45(6): 2529-39. [DOI:10.1159/000488271]
106. Wang S-C, Lin C-C, Chen C-C, Tzeng N-S, Liu Y-P. Effects of oxytocin on fear memory and neuroinflammation in a rodent model of posttraumatic stress disorder. International journal of molecular sciences. 2018; 19(12): 3848. [DOI:10.3390/ijms19123848]
107. Xu X, Yin D, Ren H, Gao W, Li F, Sun D, et al. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiology of disease. 2018; 117: 15-27. [DOI:10.1016/j.nbd.2018.05.016]
108. Nagarajan N, Jones BW, West PJ, Marc R, Capecchi M. Corticostriatal circuit defects in Hoxb8 mutant mice. Molecular psychiatry. 2018; 23(9): 1868-77. [DOI:10.1038/mp.2017.180]
109. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. The Lancet Psychiatry. 2015; 2(11): 1002-12. [DOI:10.1016/S2215-0366(15)00309-0]
110. Yang J-J, Jiang W. Immune biomarkers alterations in post-traumatic stress disorder: a systematic review and meta-analysis. Journal of affective disorders. 2020; 268: 39-46. [DOI:10.1016/j.jad.2020.02.044]
111. Kühn S, Gallinat J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biological psychiatry. 2013; 73(1): 70-4. [DOI:10.1016/j.biopsych.2012.06.029]
112. Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, et al. The role of microglia in neuropsychiatric disorders and suicide. European archives of psychiatry and clinical neuroscience. 2022: 1-17.
113. Bernstein H-G, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert review of neurotherapeutics. 2009; 9(7): 1059-71. [DOI:10.1586/ern.09.59]
114. Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neuroscience & Biobehavioral Reviews. 2021; 131: 1-29. [DOI:10.1016/j.neubiorev.2021.09.023]
115. Rohan Walker F, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Current drug targets. 2013; 14(11): 1262-76. [DOI:10.2174/13894501113149990208]
116. Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cerebral cortex. 2013; 23(8): 1784-97. [DOI:10.1093/cercor/bhs151]
117. Sun R, Zhang Z, Lei Y, Liu Y, Lu Ce, Rong H, et al. Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain. Molecular pain. 2016; 12: 1744806916679166. [DOI:10.1177/1744806916679166]
118. Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, et al. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. Journal of neuroinflammation. 2021; 18: 1-14. [DOI:10.1186/s12974-020-02040-8]
119. Torres-Rodriguez O, Ortiz-Nazario E, Rivera-Escobales Y, Velazquez B, Colón M, Porter JT. Sex-dependent effects of microglial reduction on impaired fear extinction induced by single prolonged stress. Frontiers in Behavioral Neuroscience. 2023; 16: 1014767. [DOI:10.3389/fnbeh.2022.1014767]
120. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell death & disease. 2013; 4(3): e525-e. [DOI:10.1038/cddis.2013.54]
121. Han Y-Y, Jin K, Pan Q-S, Li B, Wu Z-Q, Gan L, et al. Microglial activation in the dorsal striatum participates in anxiety-like behavior in Cyld knockout mice. Brain, behavior, and immunity. 2020; 89: 326-38. [DOI:10.1016/j.bbi.2020.07.011]
122. McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology. 2014; 39(1): 65-87. [DOI:10.1038/npp.2013.239]
123. Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. The Lancet Psychiatry. 2017; 4(7): 563-72. [DOI:10.1016/S2215-0366(17)30101-3]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 45 queries by YEKTAWEB 4714