| 1. Stein, D.J., et al., Obsessive-compulsive disorder. Nature reviews Disease primers, 2019. 5(1):52. [DOI:10.1038/s41572-019-0102-3 ] 2. Robbins, T.W., M.M. Vaghi, and P. Banca, Obsessive-compulsive disorder: puzzles and prospects. Neuron. 2019. 102: 27-47. [DOI:10.1016/j.neuron.2019.01.046 ] 3. Brady, R.E., T.G. Adams, and J.M. Lohr, Disgust in contamination-based obsessive-compulsive disorder: a review and model. Expert Review of Neurotherapeutics. 2010. 10:1295-1305. [DOI:10.1586/ern.10.46 ] 4. Pittenger, C., M.H. Bloch, and K. Williams, Glutamate abnormalities in obsessive compulsive disorder: Neurobiology, pathophysiology, and treatment. Pharmacology & Therapeutics. 2011;132: 314-332. [DOI:10.1016/j.pharmthera.2011.09.006 ] 5. Westenberg, H.G.M., N.A. Fineberg, and D. Denys, Neurobiology of Obsessive-Compulsive Disorder: Serotonin and Beyond. CNS Spectrums. 2007;12:14-27. [DOI:10.1017/S1092852900002479 ] 6. Brunelin, J., et al., Transcranial direct current stimulation for obsessive-compulsive disorder: a systematic review. Brain sciences. 2018. 8:37. [DOI:10.3390/brainsci8020037 ] 7. Altuğlu, T.B., et al., Prediction of treatment resistance in obsessive compulsive disorder patients based on EEG complexity as a biomarker. Clinical Neurophysiology. 2020;131: 716-724. [DOI:10.1016/j.clinph.2019.11.063 ] 8. Zaboski, B.A., et al., Electroencephalographic correlates and predictors of treatment outcome in OCD: a brief narrative review. Frontiers in Psychiatry. 2021;12:703398. [DOI:10.3389/fpsyt.2021.703398 ] 9. Pogarell, O., et al., Symptom-specific EEG power correlations in patients with obsessive-compulsive disorder. Int J Psychophysiol. 2006; 62:87-92. [DOI:10.1016/j.ijpsycho.2006.02.002 ] 10. Golnar-Nik, P., S. Farashi, and M.-S. Safari, The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology & Behavior. 2019. 207:90-98. [DOI:10.1016/j.physbeh.2019.04.025 ] 11. Esfahani, S.R., et al., Reliability and Validity of the Persian version of the Yale-Brown Obsessive-Compulsive scale (Y-BOCS). Iranian Journal of Psychiatry & Clinical Psychology. 2012;17. 12. Goodman, W.K., et al., The yale-brown obsessive compulsive scale: II. Validity. Archives of general psychiatry. 1989;46:1012-016. [DOI:10.1001/archpsyc.1989.01810110054008 ] 13. Pelletier, S.J. and F. Cicchetti, Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. International Journal of Neuropsychopharmacology. 2015;18: 1-13. [DOI:10.1093/ijnp/pyu047 ] 14. Podda, M.V., et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific reports. 2016; 6: 22180. [DOI:10.1038/srep22180 ] 15. Metin, S.Z., et al., Use of EEG for predicting treatment response to transcranial magnetic stimulation in obsessive compulsive disorder. Clinical EEG and Neuroscience. 2020;51:139-145. [DOI:10.1177/1550059419879569 ] 16. Mutanen, T., J. Nieminen, and R. Ilmoniemi, TMS-evoked changes in brain-state dynamics quantified by using EEG data. Frontiers in Human Neuroscience. 2013. 7. [DOI:10.3389/fnhum.2013.00155 ] 17. Acharya, U.R., et al., Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. International journal of neural systems. 2011;21:199-211. [DOI:10.1142/S0129065711002808 ] 18. Ahmadlou, M. and H. Adeli, Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder. Clinical EEG and Neuroscience. 2011; 42:6-13. [DOI:10.1177/155005941104200105 ] 19. Montez, T., et al., Synchronization likelihood with explicit time-frequency priors. Neuroimage. 2006. 33:1117-1125. [DOI:10.1016/j.neuroimage.2006.06.066 ] 20. Kira, K. and L.A. Rendell. The feature selection problem: Traditional methods and a new algorithm. in Proceedings of the tenth national conference on Artificial intelligence. 1992. 21. Robnik-Šikonja, M. and I. Kononenko, Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning. 2003. 53: 23-69. [DOI:10.1023/A:1025667309714 ] 22. Talebi, N., A.M. Nasrabadi, and T. Curran, Investigation of changes in EEG complexity during memory retrieval: the effect of midazolam. Cogn Neurodyn. 2012. 6:537-46. [DOI:10.1007/s11571-012-9214-0 ] 23. Thomasson, N., et al., Nonlinear EEG Changes Associated with Clinical Improvement in Depressed Patients. Nonlinear Dynamics, Psychology, and Life Sciences. 2000; 4:203-18. [DOI:10.1023/A:1009580427443 ]  |