1. Park JS, Choe K, Khan A, Jo MH, Park HY, Kang MH, et al. Establishing Co-Culture Blood-Brain Barrier Models for Different Neurodegeneration Conditions to Understand Its Effect on BBB Integrity. International Journal of Molecular Sciences. 2023; 24(6). [ DOI:10.3390/ijms24065283] 2. Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke. 2022; 53(5): 1473-86. [ DOI:10.1161/STROKEAHA.122.036946] 3. Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere. 2022; 298: 134261. [ DOI:10.1016/j.chemosphere.2022.134261] 4. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Frontiers in cellular neuroscience. 2018; 12: 488. [ DOI:10.3389/fncel.2018.00488] 5. Mohammadsadeghi H. The role of astrocytes in the central nervous system: physiological and pathophysiological conditions. The Neuroscience Journal of Shefaye Khatam. 2021; 9(2): 119-39. [ DOI:10.52547/shefa.9.2.119] 6. Yu H, Chang Q, Sun T, He X, Wen L, An J, et al. Metabolic reprogramming and polarization of microglia in Parkinson's disease: Role of inflammasome and iron. Ageing research reviews. 2023; 90: 102032. [ DOI:10.1016/j.arr.2023.102032] 7. Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, et al. Microglia: agents of the CNS pro-inflammatory response. Cells. 2020; 9(7): 1717. [ DOI:10.3390/cells9071717] 8. Javdani M, Barzegar-Bafrouei A. The Key Role of Macrophages and Monocytes in Spinal Cord Injury: Development of Novel Therapeutic Approaches. The Neuroscience Journal of Shefaye Khatam. 2020; 8(4): 90-102. [ DOI:10.29252/shefa.8.4.90] 9. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020 ;9(1): 42. [ DOI:10.1186/s40035-020-00221-2] 10. Lu R, Zhang L, Wang H, Li M, Feng W, Zheng X. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway. Front Pharmacol. 2022; 13: 993483. [ DOI:10.3389/fphar.2022.993483] 11. Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, et al. The importance of M1-and M2-polarized macrophages in glioma and as potential treatment targets. Brain Sciences. 2023; 13(9): 1269. [ DOI:10.3390/brainsci13091269] 12. Hsu CH, Pan YJ, Zheng YT, Lo RY, Yang FY. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARγ signaling pathways. CNS neuroscience & therapeutics. 2023; 29(12): 4113-23. [ DOI:10.1111/cns.14333] 13. Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS neuroscience & therapeutics. 2021; 27(5): 515-27. [ DOI:10.1111/cns.13620] 14. Kim S, Son Y. Astrocytes stimulate microglial proliferation and M2 polarization in vitro through crosstalk between astrocytes and microglia. International journal of molecular sciences. 2021; 22(16): 8800. [ DOI:10.3390/ijms22168800] 15. Darwish SF, Elbadry AM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. Frontiers in Aging. 2023; 4: 1231706. [ DOI:10.3389/fragi.2023.1231706] 16. Shin HJ, Lee KY, Kang JW, Choi SG, Kim DW, Yi YY. Perampanel reduces brain damage via induction of M2 microglia in a neonatal rat stroke model. International Journal of Nanomedicine. 2022: 2791-804. [ DOI:10.2147/IJN.S361377] 17. Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annual review of immunology. 2017; 35(1): 441-68. [ DOI:10.1146/annurev-immunol-051116-052358] 18. Arnold AP, McCarthy MM. Sexual differentiation of the brain and behavior: a primer. Neuroscience in the 21st Century: From Basic to Clinical: Springer; 2022. p. 2471-503. [ DOI:10.1007/978-3-030-88832-9_141] 19. Breedlove SM, Hampson E. Sexual differentiation of the brain and behavior. Behavioral endocrinology. 2002; 2: 360-9. 20. Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of neuroscience research. 2013; 91(9): 1143-51. [ DOI:10.1002/jnr.23242] 21. Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocrine reviews. 2016; 37(4): 372-402. [ DOI:10.1210/er.2016-1007] 22. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L-c, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nature neuroscience. 2013; 16(12): 1896-905. [ DOI:10.1038/nn.3554] 23. Tremblay MÈ, Zettel ML, Ison JR, Allen PD, Majewska AK. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia. 2012; 60(4): 541-58. [ DOI:10.1002/glia.22287] 24. Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, et al. TREM2 sustains microglial expansion during aging and response to demyelination. The Journal of clinical investigation. 2015; 125(5): 2161-70. [ DOI:10.1172/JCI77983] 25. Sierra A, Gottfried‐Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007; 55(4): 412-24. [ DOI:10.1002/glia.20468] 26. Hefendehl JK, Neher JJ, Sühs RB, Kohsaka S, Skodras A, Jucker M. Homeostatic and injury‐induced microglia behavior in the aging brain. Aging cell. 2014; 13(1): 60-9. [ DOI:10.1111/acel.12149] 27. Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K, Yona S, et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nature neuroscience. 2016; 19(8): 995-8. [ DOI:10.1038/nn.4325] 28. Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. Journal of neuroinflammation. 2020; 17: 1-19. [ DOI:10.1186/s12974-020-01994-z] 29. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005; 308(5726): 1314-8. [ DOI:10.1126/science.1110647] 30. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annual review of immunology. 2009; 27(1): 119-45. [ DOI:10.1146/annurev.immunol.021908.132528] 31. Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature neuroscience. 2007; 10(11): 1387-94. [ DOI:10.1038/nn1997] 32. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature reviews immunology. 2008; 8(12): 958-69. [ DOI:10.1038/nri2448] 33. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. Journal of neuroimmune pharmacology. 2009; 4: 399-418. [ DOI:10.1007/s11481-009-9164-4] 34. Xu T, Liu C, Deng S, Gan L, Zhang Z, Yang GY, et al. The roles of microglia and astrocytes in myelin phagocytosis in the central nervous system. Journal of Cerebral Blood Flow & Metabolism. 2023; 43(3): 325-40. [ DOI:10.1177/0271678X221137762] 35. Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, et al. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflammation Research. 2023; 72(3): 443-62. [ DOI:10.1007/s00011-022-01676-x] 36. Andoh M, Koyama R. Comparative Review of Microglia and Monocytes in CNS Phagocytosis. Cells. 2021; 10 (10). [ DOI:10.3390/cells10102555] 37. Chausse B, Kakimoto PA, Kann O. Microglia and lipids: how metabolism controls brain innate immunity. InSeminars in cell & developmental biology. 202; 112: 137-44. [ DOI:10.1016/j.semcdb.2020.08.001] 38. Chen Y, Song S, Parhizkar S, Lord J, Zhu Y, Strickland MR, et al. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell. 2024; 187(2): 428-45. e20. [ DOI:10.1016/j.cell.2023.11.029] 39. Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023; 46(1): 1-17. [ DOI:10.1007/s10753-022-01721-1] 40. Brown GC, Neher JJ. Eaten alive! Cell death by primary phagocytosis:'phagoptosis'. Trends in biochemical sciences. 2012; 37(8): 325-32. [ DOI:10.1016/j.tibs.2012.05.002] 41. Wang K, Li J, Zhang Y, Huang Y, Chen D, Shi Z, et al. Central nervous system diseases related to pathological microglial phagocytosis. CNS Neuroscience & Therapeutics. 2021; 27(5): 528-39. [ DOI:10.1111/cns.13619] 42. Harry GJ. Microglia in neurodegenerative events-an initiator or a significant other? . International journal of molecular sciences. 2021; 22(11): 5818. [ DOI:10.3390/ijms22115818] 43. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 2014; 15(4): 209-16. [ DOI:10.1038/nrn3710] 44. Fricker M, Oliva-Martín MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling. Journal of neuroinflammation. 2012; 9: 1-12. [ DOI:10.1186/1742-2094-9-196] 45. Li W. Eat‐me signals: Keys to molecular phagocyte biology and "Appetite" control. Journal of cellular physiology. 2012; 227(4): 1291-7. [ DOI:10.1002/jcp.22815] 46. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, et al. Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. The Journal of Immunology. 2010; 185(10): 6317-28. [ DOI:10.4049/jimmunol.1001095] 47. Anwar S, Pons V, Rivest S. Microglia purinoceptor P2Y6: an emerging therapeutic target in CNS diseases. Cells. 2020; 9(7): 1595. [ DOI:10.3390/cells9071595] 48. Liu G-D, Ding J-Q, Xiao Q, Chen S-D. P2Y6 receptor and immunoinflammation. Neuroscience bulletin. 2009; 25(3): 161. [ DOI:10.1007/s12264-009-0120-3] 49. Trautmann A. Extracellular ATP in the immune system: more than just a "danger signal". Sci signal. 2009; 2(56): e6. [ DOI:10.1126/scisignal.256pe6] 50. Burnstock G. Purine and purinergic receptors. Brain and neuroscience advances. 2018; 2: 2398212818817494. [ DOI:10.1177/2398212818817494] 51. Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MC, Corrêa-Velloso J, Pillat MM, et al. Purinergic receptors in neurological diseases with motor symptoms: targets for therapy. Frontiers in pharmacology. 2018; 9: 325. [ DOI:10.3389/fphar.2018.00325] 52. Bernier LP, Ase AR, Boué‐Grabot É, Séguéla P. Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Glia. 2013; 61(12): 2038-49. [ DOI:10.1002/glia.22574] 53. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature. 2007; 446(7139): 1091-5. [ DOI:10.1038/nature05704] 54. Gu BJ, Wiley JS. P2X7 as a scavenger receptor for innate phagocytosis in the brain. British Journal of Pharmacology. 2018; 175(22): 4195-208. [ DOI:10.1111/bph.14470] 55. Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. Journal of Neuroscience. 2009; 29(12): 3781-91. [ DOI:10.1523/JNEUROSCI.5512-08.2009] 56. Janks L, Sharma CV, Egan TM. A central role for P2X7 receptors in human microglia. Journal of neuroinflammation. 2018; 15: 1-18. [ DOI:10.1186/s12974-018-1353-8] 57. Fan Y, Xie L, Chung CY. Signaling pathways controlling microglia chemotaxis. Molecules and cells. 2017; 40(3): 163-8. [ DOI:10.14348/molcells.2017.0011] 58. Cianciulli A, Porro C, Calvello R, Trotta T, Lofrumento DD, Panaro MA. Microglia mediated neuroinflammation: focus on PI3K modulation. Biomolecules. 2020; 10(1): 137. [ DOI:10.3390/biom10010137] 59. Haugh JM, Codazzi F, Teruel M, Meyer T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. The Journal of cell biology. 2000; 151(6): 1269-80. [ DOI:10.1083/jcb.151.6.1269] 60. Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends in cell biology. 2000; 10(11): 466-73. [ DOI:10.1016/S0962-8924(00)01841-9] 61. Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. European journal of cell biology. 2006; 85(9-10): 873-95. [ DOI:10.1016/j.ejcb.2006.04.007] 62. Castellano E, Downward J. Role of RAS in the regulation of PI 3-kinase. Phosphoinositide 3-kinase in Health and Disease: Volume 1. 2011: 143-69. [ DOI:10.1007/82_2010_56] 63. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. Involvement of P2X4 and P2Y12 receptors in ATP‐induced microglial chemotaxis. Glia. 2007; 55(6): 604-16. [ DOI:10.1002/glia.20489] 64. Irino Y, Nakamura Y, Inoue K, Kohsaka S, Ohsawa K. Akt activation is involved in P2Y12 receptor‐mediated chemotaxis of microglia. Journal of neuroscience research. 2008; 86(7): 1511-9. [ DOI:10.1002/jnr.21610] 65. Lee SH, Schneider C, Higdon AN, Darley‐Usmar VM, Chung CY. Role of iPLA2 in the regulation of Src trafficking and microglia chemotaxis. Traffic. 2011; 12(7): 878-89. [ DOI:10.1111/j.1600-0854.2011.01195.x] 66. Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K-i. Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-β stimulation via the PI3K/Akt pathway. Experimental gerontology. 2007; 42(6): 532-7. [ DOI:10.1016/j.exger.2006.11.012] 67. Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, et al. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Developmental cell. 2007; 12(4): 603-14. [ DOI:10.1016/j.devcel.2007.03.005] 68. van Haastert PJ, Keizer-Gunnink I, Kortholt A. Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. The Journal of cell biology. 2007; 177(5): 809-16. [ DOI:10.1083/jcb.200701134] 69. Carnevale KA, Cathcart MK. Calcium-independent phospholipase A2 is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. The Journal of Immunology. 2001; 167(6): 3414-21. [ DOI:10.4049/jimmunol.167.6.3414] 70. Mishra RS, Carnevale KA, Cathcart MK. iPLA2β: front and center in human monocyte chemotaxis to MCP-1. The Journal of experimental medicine. 2008; 205(2): 347-59. [ DOI:10.1084/jem.20071243] 71. Lee S-H, Sud N, Lee N, Subramaniyam S, Chung CY. Regulation of integrin α6 recycling by calcium-independent phospholipase A2 (iPLA2) to promote microglia chemotaxis on laminin. Journal of Biological Chemistry. 2016; 291(45): 23645-53. [ DOI:10.1074/jbc.M116.732610] 72. Kim W-K, Kan Y, Ganea D, Hart RP, Gozes I, Jonakait GM. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-α production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. Journal of Neuroscience. 2000; 20(10): 3622-30. [ DOI:10.1523/JNEUROSCI.20-10-03622.2000] 73. Lee S, Chung C. Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation. Molecular and Cellular Neuroscience. 2009; 42(4): 382-90. [ DOI:10.1016/j.mcn.2009.08.010] 74. Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, et al. Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience. 2016; 318: 22-33. [ DOI:10.1016/j.neuroscience.2016.01.008] 75. Wang Y-P, Wu Y, Li L-Y, Zheng J, Liu R-G, Zhou J-P, et al. Aspirin-triggered lipoxin A 4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells. Journal of neuroinflammation. 2011; 8: 1-12. [ DOI:10.1186/1742-2094-8-95] 76. Lu D-Y, Tang C-H, Yeh W-L, Wong K-L, Lin C-P, Chen Y-H, et al. SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. European journal of pharmacology. 2009; 613(1-3): 146-54. [ DOI:10.1016/j.ejphar.2009.03.001] 77. Lee SH, Hollingsworth R, Kwon HY, Lee N, Chung CY. β‐arrestin 2‐dependent activation of ERK1/2 is required for ADP‐induced paxillin phosphorylation at Ser83 and microglia chemotaxis. Glia. 2012; 60(9): 1366-77. [ DOI:10.1002/glia.22355] 78. Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, et al. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. Journal of Biological Chemistry. 2007; 282(37): 27392-401. [ DOI:10.1074/jbc.M702887200] 79. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors: part 2: studies of the macrophage content of human brain tumors. Journal of neurosurgery. 1979; 50(3): 305-11. [ DOI:10.3171/jns.1979.50.3.0305] 80. Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia. 2002; 40(2): 252-9. [ DOI:10.1002/glia.10147] 81. Bettinger I, Thanos S, Paulus W. Microglia promote glioma migration. Acta neuropathologica. 2002; 103: 351-5. [ DOI:10.1007/s00401-001-0472-x] 82. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncology. 2006; 8(3): 261-79. [ DOI:10.1215/15228517-2006-008] 83. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. The Journal of Immunology. 2004; 173(6): 3916-24. [ DOI:10.4049/jimmunol.173.6.3916] 84. Hajinejad M, Far BF, Gorji A, Sahab-Negah S. The effects of self-assembling peptide on glial cell activation. Naunyn-Schmiedeberg's Archives of Pharmacology. 2024: 1-12. [ DOI:10.1007/s00210-024-03415-x] 85. Ghahremani F, Sabbaghzadeh R, Ebrahimi S, Javid H, Ghahremani J, Hashemy SI. Pathogenic role of the SP/NK1R system in GBM cells through inhibiting the thioredoxin system. Iranian journal of basic medical sciences. 2021; 24(4): 499. [ DOI:10.1155/2021/9966000] 86. Kitchens RL. Role of CD14 in cellular recognition of bacterial lipopolysaccharides. Chem Immunol. 2000; 74: 61-82. [ DOI:10.1159/000058750] 87. Markovic D, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proceedings of the National Academy of Sciences. 2009; 106(30): 12530-5. [ DOI:10.1073/pnas.0804273106] 88. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro-oncology. 2012; 14(8): 958-78. [ DOI:10.1093/neuonc/nos116] 89. Curtin J, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, et al. others. 2009. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS medicine. 6: e10. [ DOI:10.1371/journal.pmed.1000010] 90. Kees T, Lohr J, Noack J, Mora R, Gdynia G, Tödt G, et al. Microglia isolated from patients with glioma gain antitumor activities on poly (I: C) stimulation. Neuro-oncology. 2012; 14(1): 64-78. [ DOI:10.1093/neuonc/nor182] 91. Klemm F, Bleckmann A, Siam L, Chuang H-N, Rietkoetter E, Behme D, et al. β-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis. 2011; 32(3): 434-42. [ DOI:10.1093/carcin/bgq269] 92. Bleckmann A, Siam L, Klemm F, Rietkoetter E, Wegner C, Kramer F, et al. Nuclear LEF1/TCF4 correlate with poor prognosis but not with nuclear β-catenin in cerebral metastasis of lung adenocarcinomas. Clinical & experimental metastasis. 2013; 30: 471-82. [ DOI:10.1007/s10585-012-9552-7] 93. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proceedings of the National Academy of Sciences. 2006; 103(14): 5454-9. [ DOI:10.1073/pnas.0509703103] 94. Faraji N, Ebadpour N, Abavisani M, Gorji A. Unlocking hope: Therapeutic advances and approaches in modulating the WNT pathway for neurodegenerative diseases. Molecular Neurobiology. 2024: 1-23. [ DOI:10.1007/s12035-024-04462-4] 95. Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt‐dependent way. Glia. 2010; 58(12): 1477-89. [ DOI:10.1002/glia.21022] 96. Chuang HN, van Rossum D, Sieger D, Siam L, Klemm F, Bleckmann A, et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia. 2013; 61(8): 1331-46. [ DOI:10.1002/glia.22518] 97. Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H, et al. WNT signaling in activated microglia is proinflammatory. Glia. 2011; 59(1): 119-31. [ DOI:10.1002/glia.21081] 98. Ebrahimi S, Erfani B, Alalikhan A, Ghorbani H, Farzadnia M, Afshari AR, et al. The in vitro pro-inflammatory functions of the SP/NK1R system in prostate cancer: A focus on nuclear factor-kappa B (NF-κB) and its pro-inflammatory target genes. Applied Biochemistry and Biotechnology. 2023; 195(12): 7796-807. [ DOI:10.1007/s12010-023-04495-w] 99. Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, et al. PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer research. 2006; 66(20): 9809-17. [ DOI:10.1158/0008-5472.CAN-05-3877] 100. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao H-Q, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 γ 2 correlates with the invasiveness of human glioma. The American journal of pathology. 2005; 166(3): 877-90. [ DOI:10.1016/S0002-9440(10)62308-5] 101. Ebrahimi S, Mirzavi F, Hashemy SI, Khaleghi Ghadiri M, Stummer W, Gorji A. The in vitro anti‐cancer synergy of neurokinin‐1 receptor antagonist, aprepitant, and 5‐aminolevulinic acid in glioblastoma. Biofactors. 2023; 49(4): 900-11. [ DOI:10.1002/biof.1953] 102. Yamada T, Yoshiyama Y, Sato H, Seiki M, Shinagawa A, Takahashi M. White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta neuropathologica. 1995; 90: 421-4. [ DOI:10.1007/BF00294800] 103. Yoshida S, Takahashi H. Expression of extracellular matrix molecules in brain metastasis. Journal of surgical oncology. 2009; 100(1): 65-8. [ DOI:10.1002/jso.21296] 104. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)?. Trends in immunology. 2007; 28(1): 5-11. [ DOI:10.1016/j.it.2006.11.007] 105. Rossi M, Hughes J, Esiri M, Coakham H, Brownell D. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta neuropathologica. 1987; 74: 269-77. [ DOI:10.1007/BF00688191] 106. Roggendorf W, Strupp S, Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta neuropathologica. 1996; 92: 288-93. [ DOI:10.1007/s004010050520] 107. Yeganeh Hashemi A, Saremi A, Afarinesh Khaki M. The effect of a period of endurance training along with sumac extract supplementation on inflammatory and apoptotic factors in Alzheimer's male rats. Cell and Tissue Journal. 2024; 15(2): 97-112. [ DOI:10.61186/JCT.15.2.97] 108. Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nature cell biology. 2011; 13(10): 1202-13. [ DOI:10.1038/ncb2331] 109. Talasila KM, Røsland GV, Hagland HR, Eskilsson E, Flønes IH, Fritah S, et al. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro-oncology. 2017; 19(3): 383-93. 110. Moreira TJ, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, et al. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. Journal of Cerebral Blood Flow & Metabolism. 2009; 29(7): 1273-83. [ DOI:10.1038/jcbfm.2009.50] 111. Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, et al. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunology, Immunotherapy. 2023; 72(1): 1-20. [ DOI:10.1007/s00262-022-03215-3] 112. Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes, consequences, and therapy of tumors acidosis. Cancer and Metastasis Reviews. 2019; 38: 205-22. [ DOI:10.1007/s10555-019-09792-7] 113. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004; 64(3): 920-7. [ DOI:10.1158/0008-5472.CAN-03-2073] 114. Erbani J, Boon M, Akkari L, editors. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Seminars in Cancer Biology; 2022: Elsevier. [ DOI:10.1016/j.semcancer.2022.05.003] 115. Saavedra-López E, Roig-Martínez M, Cribaro GP, Casanova PV, Gallego JM, Pérez-Vallés A, et al. Phagocytic glioblastoma-associated microglia and macrophages populate invading pseudopalisades. Brain communications. 2020; 2(1): fcz043. [ DOI:10.1093/braincomms/fcz043] 116. Ghoochani A, Schwarz M, Yakubov E, Engelhorn T, Doerfler A, Buchfelder M, et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene. 2016; 35(48): 6246-61. [ DOI:10.1038/onc.2016.160] 117. Amaral RF, Geraldo LH, Einicker‐Lamas M, e Spohr TCdS, Mendes F, Lima FR. Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA1 receptor. Journal of Neurochemistry. 2021; 156(4): 499-512. [ DOI:10.1111/jnc.15097] 118. RodrÍguez E, Schetters ST, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nature Reviews Immunology. 2018; 18(3): 204-11. [ DOI:10.1038/nri.2018.3] 119. Kai K, Komohara Y, Esumi S, Fujiwara Y, Yamamoto T, Uekawa K, et al. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Human Cell. 2022: 1-12. [ DOI:10.1007/s13577-021-00619-8] 120. Arseni L, Sharma R, Mack N, Nagalla D, Ohl S, Hielscher T, et al. Sphingosine-1-phosphate recruits macrophages and microglia and induces a pro-tumorigenic phenotype that favors glioma progression. Cancers. 2023; 15(2): 479. [ DOI:10.3390/cancers15020479] 121. Li J, Kaneda MM, Ma J, Li M, Shepard RM, Patel K, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proceedings of the National Academy of Sciences. 2021; 118(16): e2009290118. [ DOI:10.1073/pnas.2009290118] 122. Couto M, Coelho‐Santos V, Santos L, Fontes‐Ribeiro C, Silva AP, Gomes CM. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin‐6‐induced JAK2/STAT3 pathway. Journal of cellular physiology. 2019; 234(11): 19750-60. [ DOI:10.1002/jcp.28575] 123. Chiavari M, Ciotti GMP, Canonico F, Altieri F, Lacal PM, Graziani G, et al. PDIA3 expression in glioblastoma modulates macrophage/microglia pro-tumor activation. International Journal of Molecular Sciences. 2020; 21(21): 8214. [ DOI:10.3390/ijms21218214] 124. Zhang Y, Wang J, Ghobadi SN, Zhou H, Huang A, Gerosa M, et al. Molecular Identity Changes of Tumor-Associated Macrophages and Microglia After Magnetic Resonance Imaging-Guided Focused Ultrasound-Induced Blood-Brain Barrier Opening in a Mouse Glioblastoma Model. Ultrasound in Medicine & Biology. 2023; 49(5): 1082-90. [ DOI:10.1016/j.ultrasmedbio.2022.12.006] 125. Lisi L, Ciotti GMP, Chiavari M, Pizzoferrato M, Mangiola A, Kalinin S, et al. Phospho-mTOR expression in human glioblastoma microglia-macrophage cells. Neurochemistry International. 2019; 129: 104485. [ DOI:10.1016/j.neuint.2019.104485] 126. Dumas AA, Pomella N, Rosser G, Guglielmi L, Vinel C, Millner TO, et al. Microglia promote glioblastoma via mTOR‐mediated immunosuppression of the tumour microenvironment. The EMBO journal. 2020; 39(15): e103790. [ DOI:10.15252/embj.2019103790] 127. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Molecular medicine. 2012; 18: 519-27. [ DOI:10.2119/molmed.2011.00217] 128. Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016; 7(22): 33440. [ DOI:10.18632/oncotarget.7961] 129. Tang F, Yang C, Li F-P, Yu D-H, Pan Z-Y, Wang Z-F, et al. Palmitoyl transferases act as potential regulators of tumor-infiltrating immune cells and glioma progression. Molecular Therapy-Nucleic Acids. 2022; 28: 716-31. [ DOI:10.1016/j.omtn.2022.04.030] 130. Tong M, Jun T, Nie Y, Hao J, Fan D. The role of the Slit/Robo signaling pathway. Journal of Cancer. 2019; 10(12): 2694. [ DOI:10.7150/jca.31877] 131. Moon RT, Kohn AD, Ferrari GVD, Kaykas A. WNT and β-catenin signalling: diseases and therapies. Nature reviews genetics. 2004; 5(9): 691-701. [ DOI:10.1038/nrg1427] 132. Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J, et al. GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signaling. Molecular Neurobiology. 2019; 56: 1517-30. [ DOI:10.1007/s12035-018-1150-5] 133. Li J, Sun Y, Sun X, Zhao X, Ma Y, Wang Y, et al. AEG-1 silencing attenuates M2-polarization of glioma-associated microglia/macrophages and sensitizes glioma cells to temozolomide. Scientific reports. 2021; 11(1): 17348. [ DOI:10.1038/s41598-021-96647-3] 134. Fan D, Yue Q, Chen J, Wang C, Yu R, Jin Z, et al. Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology. 2021; 10(1): 1932061. [ DOI:10.1080/2162402X.2021.1932061] 135. Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, Wu S, da Fonseca AC, Weng L, Yamamoto Y, Yamamoto H. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer research. 2014 Dec 15; 74(24): 7285-97. [ DOI:10.1158/0008-5472.CAN-14-1240] 136. Masoomabadi N, Gorji A, Ghadiri T, Ebrahimi S. Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword. Iranian Journal of Basic Medical Sciences. 2025; 28(1): 3. 137. Zhu C, Mustafa D, Zheng P-p, van der Weiden M, Sacchetti A, Brandt M, et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro-oncology. 2017; 19(5): 648-59. [ DOI:10.1093/neuonc/now251] 138. Hu F, Huang Y, Semtner M, Zhao K, Tan Z, Dzaye O, et al. Down-regulation of Aquaporin-1 mediates a microglial phenotype switch affecting glioma growth. Experimental Cell Research. 2020; 396(2): 112323. [ DOI:10.1016/j.yexcr.2020.112323] 139. Nuñez RE, Del Valle MM, Ortiz K, Almodovar L, Kucheryavykh L. Microglial cytokines induce invasiveness and proliferation of human glioblastoma through Pyk2 and FAK activation. Cancers. 2021; 13(24): 6160. [ DOI:10.3390/cancers13246160] 140. Parmigiani E, Ivanek R, Rolando C, Hafen K, Turchinovich G, Lehmann FM, et al. Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Developmental cell. 2022; 57(15): 1847-65. e9. [ DOI:10.1016/j.devcel.2022.06.006] 141. Takacs GP, Flores-Toro JA, Harrison JK. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. Pharmacology & therapeutics. 2021; 222: 107790. [ DOI:10.1016/j.pharmthera.2020.107790] 142. Salari S, Bagheri M. Advancements and Challenges in Preclinical Study Models of Neurodegenerative Brain Diseases: Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024; 12(4): 81-96. [ DOI:10.61186/shefa.12.4.81] 143. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nature medicine. 2006; 12(9): 1005-15. 144. Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nature immunology. 2021; 22(5): 586-94. [ DOI:10.1038/s41590-021-00913-5] 145. Forouzanfar F, Ahmadzadeh AM, Pourbagher-Shahri AM, Gorji A. Significance of NMDA receptor-targeting compounds in neuropsychological disorders: An In-depth Review. European Journal of Pharmacology. 2025: 177690. [ DOI:10.1016/j.ejphar.2025.177690] 146. Takata K, Kitamura Y, Yanagisawa D, Morikawa S, Morita M, Inubushi T, et al. Microglial transplantation increases amyloid-β clearance in Alzheimer model rats. FEBS letters. 2007; 581(3): 475-8. [ DOI:10.1016/j.febslet.2007.01.009] 147. Bakhtiari Moghadam B, Shirian S, Safar Mashaie K. The Effect of Astaxanthin on the Treatment of Neurological Diseases and Lesions. The Neuroscience Journal of Shefaye Khatam. 2024; 13(1): 87-103. [ DOI:10.61186/shefa.13.1.87] 148. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer's disease. New England Journal of Medicine. 2013; 368(2): 117-27. [ DOI:10.1056/NEJMoa1211851] 149. Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends in molecular medicine. 2017; 23(6): 512-33. [ DOI:10.1016/j.molmed.2017.03.008] 150. Popescu AS, Butler CA, Allendorf DH, Piers TM, Mallach A, Roewe J, et al. Alzheimer's disease‐associated R47H TREM2 increases, but wild‐type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia. 2023; 71(4): 974-90. [ DOI:10.1002/glia.24318] 151. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, et al. Priorities in Parkinson's disease research. Nature reviews Drug discovery. 2011; 10(5): 377-93. [ DOI:10.1038/nrd3430] 152. Behdarvand F, Shahverdi Shahraki M, Sourani Z, Modarres Mousavi M, Shirian S. Roles of different types of stem cells in treating neurodegenerative disease. The Neuroscience Journal of Shefaye Khatam. 2022; 10(2): 111-25. [ DOI:10.61186/shefa.10.2.111] 153. Moradi HR, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024; 12(2): 87-101. [ DOI:10.61186/shefa.12.2.87] 154. Lazdon E, Stolero N, Frenkel D. Microglia and Parkinson's disease: footprints to pathology. Journal of Neural Transmission. 2020; 127(2): 149-58. [ DOI:10.1007/s00702-020-02154-6] 155. Eshaghabadi Niasari A, Gorji A, Jalali H. Spreading Depression: Mechanism of Action in Neuroinflammatory Diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 11(4): 108-24. [ DOI:10.61186/shefa.11.4.108] 156. Gorji A. Neuroinflammation: the pathogenic mechanism of neurological disorders. International journal of molecular sciences. 2022; 20: 23(10): 5744. [ DOI:10.3390/ijms23105744] 157. Liu T-W, Chen C-M, Chang K-H. Biomarker of neuroinflammation in Parkinson's disease. International journal of molecular sciences. 2022; 23(8): 4148. [ DOI:10.3390/ijms23084148] 158. Ebrahimi S, Jalili-Nik M, Abde-Ahad H, Hassanian M. P 96: Role of Thrombin in Inflammatory Central Nervous System (CNS) Diseases. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 127-. 159. Kam T-I, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiology of disease. 2020; 144: 105028. [ DOI:10.1016/j.nbd.2020.105028] 160. Taylor JP, Brown Jr RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016; 539(7628): 197-206. [ DOI:10.1038/nature20413] 161. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006; 312(5778): 1389-92. [ DOI:10.1126/science.1123511] 162. Tondo G, Iaccarino L, Cerami C, Vanoli GE, Presotto L, Masiello V, et al. 11C‐PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology. 2020; 7(9): 1513-23. [ DOI:10.1002/acn3.51112] 163. Yamanashi T, Iwata M, Shibushita M, Tsunetomi K, Nagata M, Kajitani N, et al. Beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, attenuates anxiety-related behavior in a rodent post-traumatic stress disorder model. Scientific reports. 2020; 10(1): 21629. [ DOI:10.1038/s41598-020-78410-2] 164. Bargi R, Salmani H, Asgharzadeh Yazdi F, Hosseini M. Inflammation and the brain disorders: a review. The Neuroscience Journal of Shefaye Khatam. 2017; 5(3): 68-82. [ DOI:10.18869/acadpub.shefa.5.3.68] 165. Van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C] PK11195 positron emission tomography study. Biological psychiatry. 2008; 64(9): 820-2. [ DOI:10.1016/j.biopsych.2008.04.025] 166. Wohleb ES, Delpech J-C. Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2017; 79: 40-8. [ DOI:10.1016/j.pnpbp.2016.04.013]
|