|
|
 |
Articles In Press |
 |
|
|
Niacin (Vitamin B3) in Neurodegenerative Disorders: A Comprehensive Review of its Effects on Alzheimer's, Parkinson's, and Huntington's Diseases
|
Zabihollah Khaksar * , Hamid Reza Moradi  |
Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran , khaksar@shirazu.ac.ir |
|
Abstract: (8 Views) |
Introduction: Neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases are marked by progressive neuronal loss and cognitive and motor impairments. Recent studies emphasize the crucial role of micronutrients, particularly vitamin B3 (niacin), in maintaining central nervous system function. Niacin acts as a precursor to the essential coenzymes NAD⁺ (Nicotinamide adenine dinucleotide) and NADP⁺ (Nicotinamide adenine dinucleotide phosphate), which participate in key cellular processes including energy metabolism, DNA repair, epigenetic regulation, and oxidative stress responses. Reduced NAD⁺ levels in the brains of patients with neurodegenerative disorders are associated with decreased activity of NAD⁺-dependent enzymes such as SIRT1 (Sirtuin 1) and PARPs (Poly ADP-ribose polymerase). Experimental and clinical evidence suggests that administration of niacin or its derivatives, such as nicotinamide and nicotinamide riboside, may improve cognitive function, reduce neuroinflammation, promote neurogenesis, and protect neurons. However, the long-term efficacy and safety of these compounds in humans remain to be fully determined. Conclusion: This review provides a comprehensive analysis of the molecular mechanisms of niacin and its therapeutic potential in the three major neurodegenerative disorders, highlighting new opportunities for nutritional and pharmacological interventions aimed at modulating NAD⁺ metabolism.
|
|
Keywords: Neuroprotection, Neurodegenerative Diseases, Nervous System, Oxidative Stress, Neurogenesis |
|
|
Type of Study: Review --- Open Access, CC-BY-NC |
Subject:
Neurophysiopathology
|
|
|
|
|
References |
1. Moradi HR, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024; 12(2): 87-101. [ DOI:10.61186/shefa.12.2.87] 2. Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines. 2021; 9(10). [ DOI:10.3390/biomedicines9101284] 3. Cornell L, Arita K. Water Soluble Vitamins: B1, B2, B3, and B6. Geriatric Gastroenterology: Springer; 2021. p. 569-96. [ DOI:10.1007/978-3-030-30192-7_21] 4. Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & redox signaling. 2019; 30(2): 251-94. [ DOI:10.1089/ars.2017.7269] 5. Kane AE, Sinclair DA. Sirtuins and NAD(+) in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ Res. 2018; 123(7): 868-85. [ DOI:10.1161/CIRCRESAHA.118.312498] 6. Chakrabarti S, Bisaglia M. Oxidative Stress and Neuroinflammation in Parkinson's Disease: The Role of Dopamine Oxidation Products. Antioxidants (Basel). 2023; 12(4). [ DOI:10.3390/antiox12040955] 7. Joshi DC, Chavan MB, Gurow K, Gupta M, Dhaliwal JS, Ming LC. The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting. Biomedicine & Pharmacotherapy. 2025; 183: 117827. [ DOI:10.1016/j.biopha.2025.117827] 8. Freese R, Lysne V. Niacin - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023; 67. [ DOI:10.29219/fnr.v67.10299] 9. Biţă A, Scorei IR, Ciocîlteu MV, Nicolaescu OE, Pîrvu AS, Bejenaru LE, et al. Nicotinamide Riboside, a Promising Vitamin B(3) Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules. 2023; 28(16). [ DOI:10.3390/molecules28166078] 10. Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD(+) in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019; 30(4): 630-55. [ DOI:10.1016/j.cmet.2019.09.001] 11. Xiong X, Hou J, Zheng Y, Jiang T, Zhao X, Cai J, et al. NAD+-boosting agent nicotinamide mononucleotide potently improves mitochondria stress response in Alzheimer's disease via ATF4-dependent mitochondrial UPR. Cell Death & Disease. 2024; 15(10): 744. [ DOI:10.1038/s41419-024-07062-1] 12. Khaksar Z, Morovvati H, Moradi HR, Sahab Negah S. The role of extracellular matrix in myelination and oligodendrogenesis of the central nervous system. The Neuroscience Journal of Shefaye Khatam. 2019; 7(2): 66-82. [ DOI:10.29252/shefa.7.2.66] 13. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Bakhtiari moghadam B, Shirian S. An Investigation into the Effects of Water- and Fat-Soluble Vitamins in Alzheimer's and Parkinson's Diseases. The-Neuroscience-Journal-of-Shefaye-Khatam. 2023; 11(3): 95. [ DOI:10.61186/shefa.11.3.95] 14. Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep. 2023; 43(10). [ DOI:10.1042/BSR20230374] 15. Ramamoorthy K, Yoshimura R, Al-Juburi S, Anandam KY, Kapadia R, Alachkar A, et al. Alzheimer's disease is associated with disruption in thiamin transport physiology: A potential role for neuroinflammation. Neurobiol Dis. 2022; 171: 105799. [ DOI:10.1016/j.nbd.2022.105799] 16. Rekik A, Santoro C, Poplawska-Domaszewicz K, Qamar MA, Batzu L, Landolfo S, et al. Parkinson's disease and vitamins: a focus on vitamin B12. Journal of Neural Transmission. 2024; 131(12): 1495-509. [ DOI:10.1007/s00702-024-02769-z] 17. López-Molina L, Pereda-Velarde A, di Franco N, Aerts I, Sebastià E, Valls-Roca L, et al. Mitochondria from huntington's disease striatal astrocytes are hypermetabolic and compromise neuronal branching. Cell Communication and Signaling. 2025; 23(1): 341. [ DOI:10.1186/s12964-025-02341-6] 18. Dakshinamurti K, Dakshinamurti S, Czubryt M. Vitamin B6: Effects of Deficiency, and Metabolic and Therapeutic Functions. 2017. [ DOI:10.1007/978-3-319-40007-5_81-1] 19. Itoh N, Matsumura S, Iwaki T, Takenaka S, Kanouchi H. Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells. Clinical Nutrition Open Science. 2024; 55: 123-35. [ DOI:10.1016/j.nutos.2024.03.011] 20. Ramesh S, Arachchige A. Depletion of dopamine in Parkinson's disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023; 10(3): 200-31. [ DOI:10.3934/Neuroscience.2023017] 21. Hoffmann J, Busse S, von Hoff F, Borucki K, Frodl T, Busse M. Association between homocysteine and vitamin levels in demented patients. Journal of Alzheimer's Disease. 2021; 81(4): 1781-92. [ DOI:10.3233/JAD-201481] 22. Dakshinamurti S, Dakshinamurti K. 10 Vitamin B6. Handbook of Vitamins. 2007: 315. [ DOI:10.1201/9781420005806.ch10] 23. Iqbal T, Nakagawa T. The therapeutic perspective of NAD+ precursors in age-related diseases. Biochemical and Biophysical Research Communications. 2024; 702: 149590. [ DOI:10.1016/j.bbrc.2024.149590] 24. Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, et al. Parkinson's disease risk and hyperhomocysteinemia: the possible link. Cellular and Molecular Neurobiology. 2023; 43(6): 2743-59. [ DOI:10.1007/s10571-023-01350-8] 25. Zsindely N, Siági F, Bodai L. DNA methylation in Huntington's disease. International Journal of Molecular Sciences. 2021; 22(23): 12736. [ DOI:10.3390/ijms222312736] 26. Alves-Fernandes DK, Jasiulionis MG. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int J Mol Sci. 2019; 20(13). [ DOI:10.3390/ijms20133153] 27. Poulidou V, Liampas I, Arnaoutoglou M, Dardiotis E, Siokas V. The Imbalance of Homocysteine, Vitamin B12 and Folic Acid in Parkinson Plus Syndromes: A Review beyond Parkinson Disease. Biomolecules. 2024; 14(10): 1213. [ DOI:10.3390/biom14101213] 28. Meng Y, Ren Z, Xu F, Zhou X, Song C, Wang VY-F, et al. Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells. Stem Cell Reports. 2018; 11(6): 1347-56. [ DOI:10.1016/j.stemcr.2018.10.023] 29. Moradi HR, Hajali V, Khaksar Z, Vafaee F, Forouzanfar F, Negah SS. The next step of neurogenesis in the context of Alzheimer's disease. Molecular Biology Reports. 2021; 48(7): 5647-60. [ DOI:10.1007/s11033-021-06520-9] 30. Moradi HR, Heydarian S, Abdollahinezhad S. Effects of Nanoplastics and Microplastics on the Health of the Peripheral and Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2024; 12(4): 97-110. [ DOI:10.61186/shefa.12.4.97] 31. Du Preez A, Lefèvre-Arbogast S, González-Domínguez R, Houghton V, de Lucia C, Low DY, et al. Impaired hippocampal neurogenesis in vitro is modulated by dietary-related endogenous factors and associated with depression in a longitudinal ageing cohort study. Mol Psychiatry. 2022; 27(8): 3425-40. [ DOI:10.1038/s41380-022-01644-1] 32. Tondro G, Rajabzade G, Mohammadi A, Moradi H, Sahab Negah S. Anti-inflammatory effects of nano-curcumin on a glioblastoma cell line. The Neuroscience Journal of Shefaye Khatam. 2022; 10(3): 48-56. [ DOI:10.52547/shefa.10.3.48] 33. Griffin SM, Pickard MR, Hawkins CP, Williams AC, Fricker RA. Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells. PloS one. 2020; 15(9): e0233477. [ DOI:10.1371/journal.pone.0233477] 34. Menet R, Nasrallah L, Bernard M, Allain AS, ElAli A. VEGF-E Attenuates Injury After Ischemic Stroke by Promoting Reparative Revascularization. Eur J Neurosci. 2025; 61(8): e70114. [ DOI:10.1111/ejn.70114] 35. Peters KM. Effects of Niacin and Vitamin D on Endothelial Cell Angiogenic Function and Vascular Regeneration During Lipotoxicity: The University of Western Ontario (Canada); 2019. 36. Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The impact of estradiol on neurogenesis and cognitive functions in Alzheimer's disease. Cellular and molecular neurobiology. 2020; 40: 283-99. [ DOI:10.1007/s10571-019-00733-0] 37. Morris MC, Evans DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE, et al. Dietary niacin and the risk of incident Alzheimer's disease and of cognitive decline. Journal of Neurology, Neurosurgery & Psychiatry. 2004; 75(8): 1093-9. [ DOI:10.1136/jnnp.2003.025858] 38. Chen J, Chopp M. Niacin, an old drug, has new effects on central nervous system disease. Open Drug Discov J. 2010; 2: 181-6. 39. Vanmierlo T, Rutten K, Dederen J, Bloks VW, Kuipers F, Kiliaan A, et al. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiology of aging. 2011; 32(7): 1262-72. [ DOI:10.1016/j.neurobiolaging.2009.07.005] 40. Ljungberg MC, Ali YO, Zhu J, Wu C-S, Oka K, Zhai RG, et al. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Human molecular genetics. 2012; 21(2): 251-67. [ DOI:10.1093/hmg/ddr492] 41. Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, et al. NMNAT2: HSP90 complex mediates proteostasis in proteinopathies. PLoS biology. 2016; 14(6): e1002472. [ DOI:10.1371/journal.pbio.1002472] 42. Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Science translational medicine. 2022; 14(637): eabl7634. [ DOI:10.1126/scitranslmed.abl7634] 43. Grill JD, Tam S, Thai G, Vides B, Pierce AL, Green K, et al. Phase 2A Proof-of-Concept Double-Blind, Randomized, Placebo-Controlled Trial of Nicotinamide in Early Alzheimer Disease. Neurology. 2025; 104(1): e210152. [ DOI:10.1212/WNL.0000000000210152] 44. Phelan MJ. Phase II clinical trial of nicotinamide for the treatment of mild to moderate Alzheimer's disease. Journal of Geriatric Medicine and Gerontology. 2017; 3(1). [ DOI:10.23937/2469-5858/1510021] 45. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci. 2008; 28(45): 11500-10. [ DOI:10.1523/JNEUROSCI.3203-08.2008] 46. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, et al. NAD(+) supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018; 115(8): E1876-e85. [ DOI:10.1073/pnas.1718819115] 47. Brakedal B, Dölle C, Riemer F, Ma Y, Nido GS, Skeie GO, et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell metabolism. 2022; 34(3): 396-407. e6. [ DOI:10.1016/j.cmet.2022.02.001] 48. Chong R, Wakade C, Seamon M, Giri B, Morgan J, Purohit S. Niacin enhancement for Parkinson's disease: an effectiveness trial. Frontiers in Aging Neuroscience. 2021; 13: 667032. [ DOI:10.3389/fnagi.2021.667032] 49. Roshdy M, Zaky DA, Abbas SS, Abdallah DM. Niacin, an innovative protein kinase-C-dependent endoplasmic reticulum stress reticence in murine Parkinson's disease. Life Sciences. 2024; 351: 122865. [ DOI:10.1016/j.lfs.2024.122865] 50. Berven H, Kverneng S, Sheard E, Søgnen M, Af Geijerstam SA, Haugarvoll K, et al. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson's disease. Nature communications. 2023; 14(1): 7793. [ DOI:10.1038/s41467-023-43514-6] 51. Jia H, Li X, Gao H, Feng Z, Li X, Zhao L, et al. High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease. Journal of Neuroscience Research. 2008; 86(9): 2083-90. [ DOI:10.1002/jnr.21650] 52. Wakade C, Chong R, Seamon M, Purohit S, Giri B, Morgan JC. Low-dose niacin supplementation improves motor function in US Veterans with Parkinson's disease: a single-center, randomized, placebo-controlled trial. Biomedicines. 2021; 9(12): 1881. [ DOI:10.3390/biomedicines9121881] 53. Harrison IF, Powell NM, Dexter DT. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson's disease. Journal of neurochemistry. 2019; 148(1): 136-56. [ DOI:10.1111/jnc.14599] 54. Ghosh S, Feany MB. Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Human molecular genetics. 2004; 13(18): 2011-8. [ DOI:10.1093/hmg/ddh214] 55. Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington's disease models. Molecular neurobiology. 2017; 54(7): 5385-99. [ DOI:10.1007/s12035-016-0048-3] 56. Singh V, Sharma RK, Athilingam T, Sinha P, Sinha N, Thakur AK. NMR spectroscopy-based metabolomics of Drosophila model of Huntington's disease suggests altered cell energetics. Journal of proteome research. 2017; 16(10): 3863-72. [ DOI:10.1021/acs.jproteome.7b00491] 57. Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington's disease. Neurobiology of disease. 2011; 41(1): 43-50. [ DOI:10.1016/j.nbd.2010.08.017] 58. Sidhu A, Diwan V, Kaur H, Bhateja D, Singh CK, Sharma S, et al. Nicotinamide reverses behavioral impairments and provides neuroprotection in 3˗ nitropropionic acid induced animal model ofHuntington's disease: implication of oxidative stress˗ poly (ADP˗ ribose) polymerase pathway. Metabolic Brain Disease. 2018; 33: 1911-21. [ DOI:10.1007/s11011-018-0297-0] 59. Tulino R, Benjamin AC, Jolinon N, Smith DL, Chini EN, Carnemolla A, et al. SIRT1 activity is linked to its brain region-specific phosphorylation and is impaired in Huntington's disease mice. PLoS One. 2016; 11(1): e0145425. [ DOI:10.1371/journal.pone.0145425] 60. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Human molecular genetics. 2008; 17(23): 3767-75. [ DOI:10.1093/hmg/ddn273] 61. Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Molecular Metabolism. 2021; 49: 101195. [ DOI:10.1016/j.molmet.2021.101195] 62. Wuerch E, Urgoiti GR, Yong VW. The Promise of Niacin in Neurology. Neurotherapeutics. 2023; 20(4): 1037-54. [ DOI:10.1007/s13311-023-01376-2] 63. Kim EJ, Yang SJ. Nicotinamide Reduces Amyloid Precursor Protein and Presenilin 1 in Brain Tissues of Amyloid Beta-Tail Vein Injected Mice. Clin Nutr Res. 2017; 6(2): 130-5. [ DOI:10.7762/cnr.2017.6.2.130] 64. Sekiya M, Sakakibara Y, Hirota Y, Ito N, Chikamatsu S, Takei K, et al. Decreased plasma nicotinamide and altered NAD+ metabolism in glial cells surrounding Aβ plaques in a mouse model of Alzheimer's disease. Neurobiology of Disease. 2024; 202: 106694. [ DOI:10.1016/j.nbd.2024.106694] 65. Bej E, Cesare P, Volpe AR, d'Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurology International. 2024; 16(3): 502-17. [ DOI:10.3390/neurolint16030037] 66. Negah SS, Moradi HR, Forouzanfar F, Sahraian MA, Faraji M. The Role of Small Extracellular Vesicles Derived from Glial Cells in the Central Nervous System under both Normal and Pathological Conditions. Neurochemical Research. 2025; 50(2): 89. [ DOI:10.1007/s11064-025-04344-8] 67. Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Translational Neurodegeneration. 2023; 12(1): 44. [ DOI:10.1186/s40035-023-00378-6] 68. Wakade C, Giri B, Malik A, Khodadadi H, Morgan JC, Chong RK, et al. Niacin modulates macrophage polarization in Parkinson's disease. Journal of neuroimmunology. 2018; 320: 76-9. [ DOI:10.1016/j.jneuroim.2018.05.002] 69. Wakade C, Chong R, Bradley E, Morgan JC. Low-dose niacin supplementation modulates GPR109A, niacin index and ameliorates Parkinson's disease symptoms without side effects. Clinical case reports. 2015; 3(7): 635. [ DOI:10.1002/ccr3.232] 70. Seamon M, Purohit S, Giri B, Baban B, Morgan J, Chong R, et al. Niacin for Parkinson's disease. Clinical and Experimental Neuroimmunology. 2020; 11(1): 47-56. [ DOI:10.1111/cen3.12553] 71. Digby JE, Martinez F, Jefferson A, Ruparelia N, Chai J, Wamil M, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler Thromb Vasc Biol. 2012; 32(3): 669-76. [ DOI:10.1161/ATVBAHA.111.241836] 72. Giri B, Belanger K, Seamon M, Bradley E, Purohit S, Chong R, et al. Niacin ameliorates neuro-inflammation in Parkinson's disease via GPR109A. International journal of molecular sciences. 2019; 20(18): 4559. [ DOI:10.3390/ijms20184559] 73. Anderson DW, Bradbury KA, Schneider JS. Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism. Eur J Neurosci. 2008; 28(3): 610-7. [ DOI:10.1111/j.1460-9568.2008.06356.x] 74. Testa CM, Jankovic J. Huntington disease: a quarter century of progress since the gene discovery. Journal of the neurological sciences. 2019; 396: 52-68. [ DOI:10.1016/j.jns.2018.09.022] 75. Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. International Journal of Molecular Sciences. 2019; 20(4): 974. [ DOI:10.3390/ijms20040974] 76. McColgan P, Tabrizi SJ. Huntington's disease: a clinical review. European journal of neurology. 2018; 25(1): 24-34. [ DOI:10.1111/ene.13413] 77. Suzuki E, Okuda H, Nishida K, Fujimoto S, Nagasawa K. Protective effect of nicotinamide against poly (ADP-ribose) polymerase-1-mediated astrocyte death depends on its transporter-mediated uptake. Life sciences. 2010; 86(17-18): 676-82. [ DOI:10.1016/j.lfs.2010.02.019]
|
|
|
|
|
|
|