1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature Reviews Disease Primers. 2017; 3: 17013. [ DOI:10.1038/nrdp.2017.13] 2. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Movement Disorders. 2014; 29(13): 1583-90. [ DOI:10.1002/mds.25945] 3. Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. Journal of Parkinson's Disease. 2018; 8(s1): S3-S8. [ DOI:10.3233/JPD-181474] 4. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An Investigation into the effects of water-and fat-soluble vitamins in Alzheimer's and Parkinson's diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 95-109. [ DOI:10.61186/shefa.11.3.95] 5. Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, Shirian S. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. International Journal of Biological Macromolecules. 2021; 182: 82-90. [ DOI:10.1016/j.ijbiomac.2021.03.106] 6. Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson's disease in the U.S. NPJ Parkinson's Disease. 2020; 6: 15. [ DOI:10.1038/s41531-020-0117-1] 7. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Caregiver-burden in Parkinson's disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism & Related Disorders. 2016; 22: 104-8. 8. Shahverdi Shahraki M, Sourani Z, Behdarvand F, Modarres Mousavi M, Shirian S. The potency of biomarkers for the diagnosis and treatment of Parkinson's disease and Alzheimer's disease. The Neuroscience Journal of Shefaye Khatam. 2022; 10(2): 91-103. [ DOI:10.61186/shefa.10.2.91] 9. Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Molecular Neurobiology. 2016; 53: 5278-87. [ DOI:10.1007/s12035-015-9442-5] 10. Modarres Mousavi S M, Alipour F, Lotfollahzadeh S, Mousazadeh F, Hosseini H, Hosseinkhani S, et al. Behavioral Outcomes and Histopathological Alterations in a Rotenone-induced Parkinson's Disease Model: A Comparative Study of L-Dopa and Apomorphine. J Rep Pharm Sci. 2025; 13(1): e162472. [ DOI:10.5812/jrps-162472] 11. Cherian A, Thomas B, Varghese AM, Prabhakar AT, Pandian JD. Genetics of Parkinson's disease. Acta Neurologica Belgica. 2020; 120(6): 1297-1305. [ DOI:10.1007/s13760-020-01473-5] 12. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and Pathogenesis of Parkinson's syndrome. Annual Review of Pathology. 2023; 18: 95-121. [ DOI:10.1146/annurev-pathmechdis-031521-034145] 13. Jafarimanesh MA, Ai J, Shojaei S, Khonakdar HA, Darbemamieh G, Shirian S. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Progress in Biomaterials. 2023; 12(2): 75-86. [ DOI:10.1007/s40204-022-00209-3] 14. Javdani M, Habibi A, Shirian S, Kojouri GA, Hosseini F. Effect of selenium nanoparticle supplementation on tissue inflammation, blood cell count, and IGF1 levels in spinal cord injury-induced rats. Biological Trace Element Research. 2019; 187: 202-11. [ DOI:10.1007/s12011-018-1371-5] 15. Doshmanziari M, Shirian S, Kouchakian MR, Moniri SF, Jangnoo S, Mohammadi N, et al. Mesenchymal stem cells act as stimulators of neurogenesis and synaptic function in a rat model of Alzheimer's disease. Heliyon. 2021; 7(9). [ DOI:10.1016/j.heliyon.2021.e07996] 16. Kalia LV, Lang AE. Parkinson's disease. The Lancet. 2016; 386(10004): 896-912. [ DOI:10.1016/S0140-6736(14)61393-3] 17. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and Pathogenesis of Parkinson's syndrome. Annual Review of Pathology. 2023; 18: 95-121. [ DOI:10.1146/annurev-pathmechdis-031521-034145] 18. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain. 2016; 139(Pt 8): 2106-17. 19. Christopher L, Koshimori Y, Lang AE, Criaud M, Strafella AP. Uncovering the role of the hippocampus in the pathophysiology of Parkinson's disease. Neurobiology of Disease. 2019; 130: 104514. 20. Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study. Brain. 2016; 139(Pt 10): 2656-67. [ DOI:10.1093/brain/awv211] 21. Buccilli B, Sahab-Negah S, Shirian S, Gorji A, Ghadiri MK, Ascenzi BM. The telencephalon: Amygdala and claustrum. In: From anatomy to function of the central nervous system. 2025 (pp. 429-451). Academic Press. [ DOI:10.1016/B978-0-12-822404-5.00006-1] 22. Namkung H, Kim SH, Sawa A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends in Neurosciences. 2017; 40(4): 200-07. [ DOI:10.1016/j.tins.2017.02.002] 23. Caspell-Garcia C, Welch JJ, Lang AE, Litvan I, Weiner WJ, Dickson DW, et al. Longitudinal cortical atrophy in Parkinson's disease with mild cognitive impairment: a PPMI study. Movement Disorders. 2020; 35(9): 1583-91. 24. Weintraub D, Doshi J, Koka D, Davatzikos C, Siderowf AD, Duda JE, et al. Neuroimaging and cognitive correlates of Parkinson's disease with mild cognitive impairment. Neurology. 2018; 90(15): e1318-e1327. 25. Mak E, Su L, Williams GB, Watson R, Firbank MJ, Blamire AM, et al. Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease. Neurobiology of Aging. 2017; 55: 78-90. [ DOI:10.1016/j.neurobiolaging.2017.03.012] 26. Hanganu A, Bedetti C, Degroot C, Mejia-Constain B, Lafontaine AL, Chouinard S, et al. Mild cognitive impairment in Parkinson's disease is associated with a distributed pattern of brain white matter damage. Human Brain Mapping. 2016; 37(10): 3649-61. 27. Foo H, Mak E, Chander RJ, Ng A, Au WL, Sitoh YY, et al. Associations between neocortical atrophy and cognitive impairment in Parkinson's disease: a longitudinal study. Journal of Neurology, Neurosurgery & Psychiatry. 2017; 88(1): 20-7. 28. Compta Y, Pereira JB, Ríos J, Ibarretxe-Bilbao N, Junqué C, Martí MJ. Combined dementia-risk biomarkers in Parkinson's disease: a longitudinal study. Parkinsonism & Related Disorders. 2016; 29: 63-9. 29. Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC. Biomarkers for dementia and mild cognitive impairment in Parkinson's disease. Movement Disorders. 2016; 31(6): 861-81. [ DOI:10.1002/mds.26662] 30. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression. Brain. 2017; 140(7): 1959-76. [ DOI:10.1093/brain/awx118] 31. Atkinson-Clement C, Pinto S, Eusebio A, Coulon O. Diffusion tensor imaging in Parkinson's disease: Review and meta-analysis. NeuroImage: Clinical. 2017; 16: 98-110. [ DOI:10.1016/j.nicl.2017.07.011] 32. Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG. White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology. 2018; 91(24): e2244-e2255. [ DOI:10.1212/WNL.0000000000006646] 33. Zhang Y, Wu G, De Witte S, Baeken C. Altered microstructural properties of superficial white matter in patients with Parkinson's disease. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2025; 10(3): 267-275. 34. Taylor KI, Sambataro F, Boess FG, Weiller E, Schneider F, Wolf N, et al. Progressive decline in gray and white matter integrity in de novo Parkinson's disease: An analysis of longitudinal Parkinson Progression Markers Initiative data. Frontiers in Aging Neuroscience. 2018; 10: 318. [ DOI:10.3389/fnagi.2018.00318] 35. Deng X-Y, Wang L, Yang T-T, Li R, Yu G. A meta-analysis ofDiffusion tensor imaging of substantia nigra in patients with Parkinson's disease. Scientific Reports. 2018; 8: 2941. [ DOI:10.1038/s41598-018-20076-y] 36. Wen M-C, Heng HSE, Lu Z, Xu Z, Chan LL, Tan EK, et al. White matter microstructural characteristics in newly diagnosed Parkinson's disease patients. Frontiers in Neurology. 2020; 11: 748. 37. Georgiopoulos C, Warntjes JBM, Dizdar N, Zachrisson H, Engström M, Haller S, et al. Olfactory impairment in Parkinson's disease studied with diffusion tensor and magnetization transfer imaging. Journal of Parkinson's Disease. 2017; 7(2): 301-311. [ DOI:10.3233/JPD-161060] 38. Mishra AK, Mishra SK, Sairam S, Yatham P, Chan P, Roy A, et al. White matter abnormalities in Parkinson's disease: A detailed assessment of DTI metrics. Neuroradiology. 2020; 62(7): 841-850. 39. Chen YS, Chen HL, Lu CH, Chen MH, Chou KH, Tsai NW, et al. Reduced fractional anisotropy in patients with Parkinson's disease: A diffusion tensor imaging study. Frontiers in Neurology. 2017; 8: 532. 40. Gu L, Hong Z, Chen H, Wang Y, Zhang Y, Wang J, et al. White matter tracts alterations in Parkinson's disease patients with REM sleep behavior disorder: A fixel-based analysis. Brain Imaging and Behavior. 2020; 14(5): 1728-1738. 41. Nazeri A, Chakravarty MM, Rotenberg DJ, Rajji TK, Rathi Y, Michailovich OV, et al. Superficial white matter as a novel substrate of age-related cognitive decline. Neurobiology of Aging. 2016; 38: 146-159. 42. Phillips OR, Joshi SH, Squitieri F, Sanchez-Castaneda C, Narr K, Shattuck DW, et al. Major superficial white matter tracts in the adult human brain: A diffusion tensor imaging study. NeuroImage: Clinical. 2016; 11: 145-153. 43. Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM. Intracortical myelin links with performance variability across the human lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. The Journal of Neuroscience. 2016; 36(47): 12011-12022. 44. Wu Y, Sun D, Wang Y, Wang Y, Ou S. Segmentation of the subcortical structures and superficial white matter in fixed human brain using diffusion MRI. Magnetic Resonance Imaging. 2016; 34(7): 909-916. 45. Vidal-Piñeiro D, Walhovd KB, van der Kouwe AJW, Benner T, Fjell AM, Fischl B. Reduced myelination and increased cortical thickness in superficial white matter in aging. Cerebral Cortex. 2020; 30(4): 2476-2488. 46. Yeatman JD, Wandell BA, Mezer AA. Lifespan maturation and degeneration of human brain white matter. Nature Communications. 2016; 7: 12872. 47. Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Research Reviews. 2017; 34: 64-76. [ DOI:10.1016/j.arr.2016.11.006] 48. Huntenburg JM, Bazin PL, Margulies DS. Large-scale gradients in human cortical organization. Trends in Cognitive Sciences. 2018; 22(1): 21-31. [ DOI:10.1016/j.tics.2017.11.002] 49. Guevara M, Román C, Guevara P, Valenzuela R, Duclap D, Mangin JF. Superficial white matter: A review on the dMRI analysis and microstructural modeling. NeuroImage. 2020; 223: 117323. [ DOI:10.1016/j.neuroimage.2020.116673] 50. Galvan A, Devergnas A, Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in Parkinson's disease. Frontiers in Neuroanatomy. 2016; 10: 104. [ DOI:10.3389/fnana.2015.00005] 51. McGregor MM, Nelson AB. Circuit mechanisms of Parkinson's disease. Neuron. 2019; 101(6): 1042-1056. [ DOI:10.1016/j.neuron.2019.03.004] 52. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience. 2016; 34: 441-66. [ DOI:10.1146/annurev-neuro-061010-113641] 53. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2016; 494(7430): 238-242. [ DOI:10.1038/nature11846] 54. Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron. 2017; 95(6): 1306-1318.e5. [ DOI:10.1016/j.neuron.2017.08.038] 55. Albin RL, Leventhal DK. The missing, the short, and the long: Levodopa responses and dopamine actions. Annals of Neurology. 2017; 82(1): 4-19. [ DOI:10.1002/ana.24961] 56. Politis M, Niccolini F. Serotonin in Parkinson's disease. Behavioural Brain Research. 2016; 277: 136-145. [ DOI:10.1016/j.bbr.2014.07.037] 57. Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochemistry International. 2019; 126: 1-10. [ DOI:10.1016/j.neuint.2019.02.019] 58. Wang YY, Wang Y, Jiang HF, Liu JH, Jia J, Wang K, et al. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-par Lutimate 0.7.0.4 parkinsonian rats. Experimental Neurology. 2018; 300: 135-148. [ DOI:10.1016/j.expneurol.2017.11.006] 59. Luan Y, Tang D, Wu H, Gu W, Wu Y, Cao JL, et al. Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice. Proceedings of the National Academy of Sciences of the United States of America. 2020; 117(18): 10045-054. [ DOI:10.1073/pnas.1916263117] 60. Tsou YH, Shih CT, Ching YH, Huang JY, Chang KY, Chen PH, et al. Treadmill exercise protects against MPTP-induced dopaminergic neuronal loss through upregulation of the KEAP1-NRF2 pathway. Free Radical Biology and Medicine. 2020; 159: 25-37. 61. Pierfelice J, Kontson K. Nitric oxide signaling in the basal ganglia: a possible target for Parkinson's disease. Neural Regeneration Research. 2023; 18(9): 1941-942. 62. Aguiar AS Jr, Lopes SC, Tristão FS, Rial D, de Oliveira G, da Cunha C, et al. Exercise improves cognitive impairment and dopamine metabolism in MPTP-treated mice. Neurotoxicity Research. 2016; 29(1): 118-125. [ DOI:10.1007/s12640-015-9566-4] 63. Palasz E, Niewiadomski W, Gasiorowska A, Mietz L, Niewiadomska G. Exercise-induced neuroprotection and recovery of motor function in animal models of Parkinson's disease. Frontiers in Neurology. 2019; 10: 1143. [ DOI:10.3389/fneur.2019.01143] 64. Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi Barough S, Gholami L, Parsamanesh G, et al. The effect of collagen and fibrin hydrogels encapsulated with adipose tissue mesenchymal stem cell-derived exosomes for treatment of spinal cord injury in a rat model. Iranian Journal of Biotechnology. 2023; 21(3): e3505. 65. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience. 2016; 39: 1-28. 66. Neumann WJ, Horn A, Ewert S, Huebl J, Brucke C, Schneider GH, et al. A localized pallidal physiomarker in Parkinson's disease. Annals of Neurology. 2020; 87(3): 337-347. 67. Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz DM, Tan H, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease. Brain. 2017; 140(4): 1053-1067. [ DOI:10.1093/brain/awx010] 68. Aarsland D, Creese B, Politis M, Chaudhuri KR, ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nature Reviews Neurology. 2017; 13(4): 217-231. [ DOI:10.1038/nrneurol.2017.27] 69. Biundo R, Weis L, Fiorenzato E, Antonini A. Transcranial direct current stimulation (tDCS) in Parkinson's disease: A systematic review. Movement Disorders Clinical Practice. 2016; 3(4): 325-336. 70. Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kühn AA, Brown P. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication. Brain. 2017; 140(11): 2968-981. [ DOI:10.1093/brain/awx252] 71. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2016; 135(Pt 11): 3206-26. [ DOI:10.1093/brain/aws023] 72. Okun MS, Foote KD, Wu SS, Ward HE, Bowers D, Rodriguez RL, et al. A trial of scheduled deep brain stimulation for Parkinson's disease: a randomized controlled trial. The New England Journal of Medicine. 2016; 375(10): 1001-11. 73. Broen MPG, Narayen NE, Moonen AJM, Kuijf ML, Dujardin K, Marsh L, et al. Nonmotor symptoms and cognitive decline in Parkinson's disease: a longitudinal study. Neurology. 2016; 87(14): 1483-92. 74. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA: The Journal of the American Medical Association. 2016; 311(16): 1670-83. [ DOI:10.1001/jama.2014.3654] 75. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson's disease with early motor complications. The New England Journal of Medicine. 2016; 374(6): 610-22. 76. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology. 2022; 22(11): 657-673. [ DOI:10.1038/s41577-022-00684-6] 77. Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson's disease. Frontiers in Aging Neuroscience. 2017; 9: 176. [ DOI:10.3389/fnagi.2017.00176] 78. Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The contribution of microglia to the pathogenesis and progression of Parkinson's disease. Glia. 2021; 69(10): 2271-288. 79. Hughes CD, Choi ML, Ryten M, Hopkins L, Drews A, Botía JA, et al. Picomolar concentrations of oligomeric alpha-synuclein sensitize TLR4 to play an initiating role in Parkinson's disease pathogenesis. Acta Neuropathologica. 2019; 137(1): 103-120. [ DOI:10.1007/s00401-018-1907-y] 80. Cherian A, Thomas B, Varghese AM, Prabhakar AT, Pandian JD. Genetics of Parkinson's disease. Acta Neurologica Belgica. 2020; 120(6): 1297-1305. [ DOI:10.1007/s13760-020-01473-5] 81. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. Journal of Parkinson's Disease. 2016; 3(4): 461-491. [ DOI:10.3233/JPD-130230] 82. Zhang Y, Zhang Y, Li J, Zhang Y, Zhang X, Chen J, et al. Diosgenin protects against MPTP-induced Parkinson's disease-like symptoms in mice by increasing antioxidative defense. Oxidative Medicine and Cellular Longevity. 2022; 2022: 6513438. 83. Harms AS, Ferreira SA, Romero-Ramos M. Microglia in Parkinson's disease. Acta Neuropathologica. 2021; 142(4): 629-52. 84. Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and neuroinflammation: What place in Parkinson's disease? Journal of Neuroinflammation. 2020; 17(1): 166. 85. Joers V, Tansey MG, Murray NE, Emborg ME. Neuroinflammation in Parkinson's disease: From gene to clinic. International Review of Neurobiology. 2023; 172: 287-331. 86. Wang JY, Zhuang QQ, Xu L, Wang Y, Yang J, Peng H, et al. Iron and Parkinson's disease: a systematic review and meta-analysis. Molecular Neurobiology. 2018; 55(4): 2918-929. 87. Langley J, He N, Huddleston DE, Chen S, Yan P, Yacoub E, et al. Reproducible detection of nigral iron deposition in Parkinson's disease using quantitative susceptibility mapping. NeuroImage: Clinical. 2020; 26: 102204. 88. Weinreb O, Mandel S, Youdim MB, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radical Biology and Medicine. 2016; 97: 585-598. 89. Sun Y, Pham AN, Waite TD. The effect of dopamine oxidation on neuromelanin and iron in the substantia nigra: relevance to Parkinson's disease. Chemical Research in Toxicology. 2018; 31(8): 743-752. 90. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology. 2017; 155: 96-119. [ DOI:10.1016/j.pneurobio.2015.09.012] 91. Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. TheенThe role of iron and alpha-synuclein interplay in synucleinopathies. Movement Disorders. 2021; 36(7): 1515-528. 92. He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Human Brain Mapping. 2016; 36(11): 4407-420. [ DOI:10.1002/hbm.22928] 93. Du G, Lewis MM, Sica C, Kong L, Huang X. Magnetic resonance imaging T2* and quantitative susceptibility mapping in Parkinson's disease and parkinsonisms. Movement Disorders. 2018; 33(6): 888-897. 94. Sjöström H, Granberg T, Westman E, Svenningsson P. Quantitative susceptibility mapping differentiates between parkinsonian disorders. Parkinsonism & Related Disorders. 2017; 44: 92-97. [ DOI:10.1016/j.parkreldis.2017.08.029] 95. Thomas GEC, Leyland LA, Schrag A, Lees AJ, Acosta-Cabronero J, Weil RS. Brain iron deposition is linked with cognitive severity in Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry. 2020; 91(4): 418-425. [ DOI:10.1136/jnnp-2019-322042] 96. Devos D, Moreau C, Danel M, Mansuy J, Defebvre L, Bordet R, et al. Iron chelation in Parkinson's disease: an update on clinical trials. Movement Disorders. 2021; 36(7): 1507-1514. 97. Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson's disease. Biochemical Society Transactions. 2019; 47(2): 651-661. [ DOI:10.1042/BST20180462] 98. Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges and hopes. Nature Reviews Neurology. 2020; 16(2): 87-99. [ DOI:10.1038/s41582-019-0301-2] 99. Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Gene therapy for Parkinson's disease: from bench to bedside. Nature Reviews Neurology. 2021; 17(8): 466-484. 100. Palfi S, Gurruchaga JM, Lepetit H, Howard K, Ralph GS, Mason S, et al. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson's disease. Human Gene Therapy Clinical Development. 2018; 29(3): 148-155. [ DOI:10.1089/humc.2018.081] 101. Migdalska-Richards A, Schapira AHV. Gene therapy for Parkinson's disease: prospects and challenges. Movement Disorders. 2016; 31(12): 1795-1804. 102. Kantor B, Tagliafierro L, Gu J, Zamora ME, Ilich E, Grenier C, et al. Downregulation of SNCA expression by targeted editing of DNA methylation: a potential strategy for precision therapy in PD. Molecular Therapy. 2018; 26(11): 2638-2649. [ DOI:10.1016/j.ymthe.2018.08.019] 103. He X, Hedde PN, Abrahamsson S, Sharon G, Cho CE, Lee JE, et al. Real-time MRI guidance for intra-arterial drug delivery in a nonhuman primate stroke model. Journal of Magnetic Resonance Imaging. 2019; 50(3): 699-707.
|