[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 7, Issue 3 (Summer 2019) ::
Shefaye Khatam 2019, 7(3): 61-73 Back to browse issues page
An Overview of the Effects of Melatonin on Nervous System Diseases
Zaynab Khalili, Parastoo Barati Dowom, Marzieh Darvishi *, Khadijeh Abdal
Department of Anatomical Sciences, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
Abstract:   (2123 Views)
Introduction: Melatonin is a hormone secreted from the pineal gland and plays an important role in regulating the brain functions. This hormone with antioxidant activity supports the body against internal and external damaging factors. Melatonin reduces the production of free radicals by preserving mitochondrial homeostasis, and contributes to ATP synthesis in mitochondria. Reduction of melatonin by aging is one of the hypotheses suggested to be implicated in increase of the incidence of neurological disorders. Various factors play a role in the regulation and production of the melatonin. This hormone can act as a neuroprotective agent for some neurological disorders, such as Alzheimer's disease, Parkinson's disease, depression, and migraine. Conclusion: According to the positive effects on the nervous system, non-toxic properties following long-term application, and the absence of side effects, melatonin can be a suitable compound for treatment of some neurological disease.
Keywords: Melatonin, Depression, Nervous System Diseases
Full-Text [PDF 1312 kb]   (1636 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Molecular Neurobiology
1. Zagajewski J, Drozdowicz D, Brzozowska I, Hubalewska-Mazgaj M, Stelmaszynska T, Laidler PM, et al. Conversion of L-tryptophan to melatonin in the GIT: new HPLC method enabling simultaneous determination of six metabolites of L-tryptophan by native fluorescence and UV-VIS detection. J Phys Pharmacol. 2012; 63(6): 613-21.
2. Wurtman RJ, Axelrod J. The pineal gland. Sci Am. 2013; 1965: 50-60. [DOI:10.1038/scientificamerican0765-50]
3. Dun-Xian T, Lucien M, Lilan Q, Russel R. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci. 2016; 17(12): 2124. doi: 10.3390/ijms17122124. [DOI:10.3390/ijms17122124]
4. Besharse JC, McMahon DG. The retina and other ocular clocks. J Biol Rhythms. 2016; 31(3): 223-43. [DOI:10.1177/0748730416642657]
5. Reiter RJ, Tan DX, Kim SJ, Cruz MH. Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct Funct. 2014; 219(6): 1873-87. [DOI:10.1007/s00429-014-0719-7]
6. Seithikurippu R, Pandi-Perumal Ahmed S, BaHammam Gregory M, Brown D, Warren Spence Vijay K, Bharti Charanjit Kaur, et al. Cardinali melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res. 2013; 23(3): 267-300. [DOI:10.1007/s12640-012-9337-4]
7. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin nature's most versatile signal. FEBS J. 2006; 273(13): 2813-38. [DOI:10.1111/j.1742-4658.2006.05322.x]
8. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005; 9(1): 11-24. [DOI:10.1016/j.smrv.2004.08.001]
9. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST. et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a bio marker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998; 253(3): 614-20. [DOI:10.1006/bbrc.1998.9826]
10. Cavanaugh JE, Witt-Enderby PA. CNS melatonin receptors and signaling: focus on ageing related disease and future perspective. Open Neuoendocrinol. 2010; 3: 96-104.
11. Pevet P. The internal time giving role of melatonin: a key to our health. Rev Neurol (Paris). 2014; 170: 646-52. [DOI:10.1016/j.neurol.2014.05.008]
12. Vriend J, Reiter RJ. Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res. 2015; 58(1): 1-11. [DOI:10.1111/jpi.12189]
13. Wolloscheck T, Kunst S, Kelleher DK, Spessert R. Transcriptional regulation of nucleoredoxin-like genes takes place on a daily basis in the retina and pineal gland of rats. Vis Neurosci. 2015; 32: E002. doi: 10.1017/S0952523814000352. [DOI:10.1017/S0952523814000352]
14. Mathes AM, Kubulus D, Weiler J, Bentley A, Waibel L, Wolf B, et al. Melatonin receptors mediate improvements of liver function but not of hepatic perfusion and integrity after hemorrhagic shock in rats. Crit Care Med. 2008; 36(1): 24-9. [DOI:10.1097/01.CCM.0000292088.33318.F0]
15. Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptomine: comparisons across species. J Pineal Res. 2016; 61(1): 27-40. [DOI:10.1111/jpi.12336]
16. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015; 59(4): 403-19. [DOI:10.1111/jpi.12267]
17. Asma A, Syed Sikander A. Binding free energy based analysis of arsenic (+ 3 oxidation state) methyltransferase with S-adenosylmethionine. Journal of Molecular Liquids. 2016; 220: 375-82. [DOI:10.1016/j.molliq.2016.04.109]
18. Syed Sikander A, Ayman S, Naila Z, Saad R. Role of N-acetylserotonin O-methyltransferase in bipolar disorders and its dynamics. Journal of Molecular Liquids. 2013; 182: 25-31. [DOI:10.1016/j.molliq.2013.03.008]
19. Saad R, Gul S, Thanyada R, Syed Sikander A. The vitality of swivel domain motion in performance of enzyme i of phosphotransferase system; a comprehensive molecular dynamic study. Journal of Molecular Liquids. 2017; 242: 1184-98. [DOI:10.1016/j.molliq.2017.07.086]
20. Reiter RJ, Tan DX, Galano A. Melatonin: exceeding expectations. Physiology (Bethesda). 2014; 29(5): 325-33. [DOI:10.1152/physiol.00011.2014]
21. Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA. Physiological functions of protein kinase B/Akt. Biochem Soc Trans. 2004; 32(2): 350-4. [DOI:10.1042/bst0320350]
22. Lukiw WJ, Bazan NG. Survival signalling in Alzheimer's disease. Biochem Soc Trans. 2006; 34(6): 1277-82. [DOI:10.1042/BST0341277]
23. Pande V, Ramos MJ. NF-kappaB in human disease: current inhibitors and prospects for de novo structure based design of inhibitors. Curr Med Chem. 2005; 12(3): 357-74. [DOI:10.2174/0929867053363180]
24. Koh PO. Melatonin attenuates the cerebral ischemic injury via the MEK/ERK/p90RSK/bad signaling cascade. J Vet Med Sci. 2008; 70(11): 1219-23. [DOI:10.1292/jvms.70.1219]
25. Wang X. The anti-apoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009; 15(4): 345-57. [DOI:10.1111/j.1755-5949.2009.00105.x]
26. Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003; 546(1): 108-12. [DOI:10.1016/S0014-5793(03)00562-3]
27. Su HM. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem. 2010; 21(5): 364-73. [DOI:10.1016/j.jnutbio.2009.11.003]
28. Mattson MP, Camandola S. NF-kB in neuronal plasticity and neurodegenerative disorders. J Clin Invest. 2001; 107: 247-54. [DOI:10.1172/JCI11916]
29. Jou MJ, Peng I, Reiter J, Jou SB, Wu HY, Wen ST. Visualization of the antioxidative effects ofmelatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J. Pineal Res.2004; 37: 55-70. [DOI:10.1111/j.1600-079X.2004.00140.x]
30. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013; 14(12): 877-82. [DOI:10.1016/j.jamda.2013.05.009]
31. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014; 79: 1-12. [DOI:10.1016/j.neures.2013.10.004]
32. Acun˜a-Castroviejo CD, Lopez LC, Escames G, Lopez A, Garcı'a JA, Reiter RJ. Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem. 2011; 11(2): 221-40. [DOI:10.2174/156802611794863517]
33. Hardeland R. Melatonin and theories of ageing: a critical appraisal of melatonin's role in antiaging mechanism. J Pineal Res. 2013; 55(4): 325-56. [DOI:10.1111/jpi.12090]
34. Yoshikazu Y, Atsuhiko H, Kazuyoshi T, Masako O, Bunpei I. Effects of melatonin: basic studies and clinical applications. Anti-Ageing Med. 2010; 7: 85-91.
35. Galano A, Tan DX, Reiter RJ. On the free radical activities of melatonin's metabolites, AFMK and AMK. J Pineal Res. 2013; 54(3): 245-57. [DOI:10.1111/jpi.12010]
36. Barzilai N, Gabriely I, Atzmon G, Suh Y, Rothenberg D, Bergman A. Genetic studies reveal the role of the endocrine and metabolic systems in aging. J Clin Endocrinol Metab. 2010; 95(10): 4493-500. [DOI:10.1210/jc.2010-0859]
37. Cunningham C. Systemic inflammation and delirium: important co-factors in the progression of dementia. Biochem Soc Trans. 2011; 39(4): 945-53. [DOI:10.1042/BST0390945]
38. Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J PinealRes. 2011; 51(1): 1-16. [DOI:10.1111/j.1600-079X.2011.00916.x]
39. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011; 2011: 326320. doi: 10.4061/2011/326320. [DOI:10.4061/2011/326320]
40. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res. 2007; 43(4): 389-403. [DOI:10.1111/j.1600-079X.2007.00490.x]
41. Kaur C, Viswanathan S, Ling EA. Hypoxia-induced cellular and vascular changes in the nucleus tractus solitarius and ventrolateral medulla. J Neuropathol Exp Neurol. 2011; 70(3): 201-17. [DOI:10.1097/NEN.0b013e31820d8f92]
42. Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol. 2011; 238(1-2): 1-11. [DOI:10.1016/j.jneuroim.2011.07.002]
43. Jain SV, Horn PS, Simakajornboon N, Beebe DW, Holland K, Byars AW, et al. Melatonin improves sleep in children with epilepsy: results from a randomized, double-blind, placebo-controlled, cross-over study. Sleep Med. 2015; 16(5): 637-44. [DOI:10.1016/j.sleep.2015.01.005]
44. Gupta M, Aneja S, Kohli K. Add-on melatonin improves quality of life in epileptic children on valproate monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsy Behav. 2004; 5(3): 316-21. [DOI:10.1016/j.yebeh.2004.01.012]
45. Petkova Z, Tchekalarova J, Pechlivanova D, Moyanova S. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. 2014; 31: 198-208. [DOI:10.1016/j.yebeh.2013.12.013]
46. Wade AG, Ford I, Crawford G, McConnachie A, Nir T, Laudon M, et al. Nightly treatment of primary insomnia with prolonged release of melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med. 2010; 8: 51. doi: 10.1186/1741-7015-8-51. [DOI:10.1186/1741-7015-8-51]
47. Cardinali DP, Srinivasan V, Brzezinski A, Brown GM. Melatonin and its analogs in insomnia and depression. J. Pineal Res. 2012; 52(4): 365-75. [DOI:10.1111/j.1600-079X.2011.00962.x]
48. Leon J, Acuna-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005; 38(1): 1-9. [DOI:10.1111/j.1600-079X.2004.00181.x]
49. Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. Faseb J. 2004; 18(7):869-71. [DOI:10.1096/fj.03-1031fje]
50. Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res. 2004; 36(3): 171-6. [DOI:10.1046/j.1600-079X.2003.00115.x]
51. Kilic E, Kilic U, Reiter RJ, Bassetti CL, Hermann DM. Tissue-plasminogen activator-induced ischemic brain injury is reversed by melatonin: role of iNOS and akt. J Pineal Res. 2005; 39(2): 151-5. [DOI:10.1111/j.1600-079X.2005.00228.x]
52. Koh PO. Melatonin attenuates the focal cerebral ischemic injury by inhibiting the dissociation of pBad from 14-3-3. J Pineal Res. 2008; 44(1): 101-6. [DOI:10.1111/j.1600-079X.2007.00495.x]
53. Molina-Carballo A, Mun˜oz-Hoyos A, Sa' nchez-Forte M, Uberos-Ferna' ndez J, Moreno-Madrid F, Acun˜a-Castroviejo D. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physio-logical concentrations. Neuropediatrics. 2007; 38(3): 122-5. [DOI:10.1055/s-2007-985138]
54. Lin TY, Huang WJ, Wu CC, Lu CW, Wang SJ. Acacetin inhibits glutamate release and prevents kainic-acid-induced neurotoxicity in rats. Plos One. 2014; 9(2): e88644. doi: 10.1371/journal.pone.0088644. [DOI:10.1371/journal.pone.0088644]
55. Liu L, Chan C. The role of the inflammasome in Alzheimer's disease. Ageing Res Rev. 2014; 15: 6-15. [DOI:10.1016/j.arr.2013.12.007]
56. Morales I, Guzma'n-Martı'net L, Cerda-Troncoso C, Farı'as GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014; 8: 112. doi: 10.3389/fncel.2014.00112. [DOI:10.3389/fncel.2014.00112]
57. Lopategui Cabezas I, Herrera Batista A, Pento'n Rol G, The role of glial cells in Alzheimer disease: potential therapeutic implications. Neurologia. 2014; 29(5): 305-9. [DOI:10.1016/j.nrleng.2012.10.009]
58. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, et al. Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett. 2005; 380(1-2): 26-31. [DOI:10.1016/j.neulet.2005.01.003]
59. Feng Z, Zhang JT. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med. 2004; 37(11): 1790-801. [DOI:10.1016/j.freeradbiomed.2004.08.023]
60. Feng Z, Qin C, Chang Y, Zhang JT. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer's disease. Free Radic Biol Med. 2006; 40(1): 101-9. [DOI:10.1016/j.freeradbiomed.2005.08.014]
61. Gutierrez-Cuesta J, Tajes M, Jimenez A, Coto-Montes A, Camins A, Pallas M. Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. J Pineal Res. 2008; 45(4): 497-505. [DOI:10.1111/j.1600-079X.2008.00626.x]
62. Mayo C, Sainz M, Tan D. Melatonin and parkinson's disease. Endocrine. 2005; 27(2): 169-78. [DOI:10.1385/ENDO:27:2:169]
63. Acuna-Castroviejo D, Coto-Montes A, Gaia Monti M, Ortiz GG, Reiter RJ. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci. 1997; 60(2): 23-9. [DOI:10.1016/S0024-3205(96)00606-6]
64. More, SV, Kumar H, Kim IS, Song SY, Choi DK. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson's disease. Mediators Inflamm. 2013; 2013: 952375. doi: 10.1155/2013/952375. [DOI:10.1155/2013/952375]
65. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res. 2013; 54(1): 1-14. [DOI:10.1111/j.1600-079X.2012.01014.x]
66. Tapias V, Cannon JR, Greenamyre JT. Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson's disease model. J Neurosci Res. 2010; 88(2): 420-7. [DOI:10.1002/jnr.22201]
67. Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, down-regulation of dopamine transporter, and up-regulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res. 2008; 44(2): 205-13. [DOI:10.1111/j.1600-079X.2007.00510.x]
68. Sandyk R. Pineal melatonin functions and the depression of Parkinson's disease: A hypothesis. Int J Neurosci. 1990; 51(1-2): 73-7. [DOI:10.3109/00207459009000510]
69. Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson's disease. Clin Neuropharmacol. 2003; 26(2): 65-72. [DOI:10.1097/00002826-200303000-00005]
70. Boeve BF, Silber MH, Ferman TJ. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med. 2003; 4(4): 281-4. [DOI:10.1016/S1389-9457(03)00072-8]
71. Acuña-Castroviejo D, Reiter RJ, Menéndez-Peláez A, Pablos MI, Burgos A. Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J Pineal Res. 1994; 16(2): 100-12. [DOI:10.1111/j.1600-079X.1994.tb00089.x]
72. Ortiz GG, Crespo-Lopez ME, Moran-Moguel C, Garcia JJ, Reiter RJ, Acuna-Castroviejo D. Protective role of melatonin against MPTP-induced mouse brain cell DNA fragmentation and apoptosis in vivo. Neuro Endocrinol. Lett. 2001; 22(2): 101-8.
73. Antolín I, Mayo JC, Sainz RM, del Brío Mde L, Herrera F, Martín V, et al. Protective effect of melatonin in a chronic experimental model of Parkinson's disease. Brain Res. 2002; 943(2): 163-73. [DOI:10.1016/S0006-8993(02)02551-9]
74. Thomas B, Mohanakumar KP. Melatonin protects against oxidative stress caused by -methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum. J Pineal Res. 2004; 36(1): 25-32. [DOI:10.1046/j.1600-079X.2003.00096.x]
75. Armstrong KJ, Niles LP. Induction of GDNF mRNA expression by melatonin in rat C6 glioma cells. Neuroreport. 2002; 13(4): 473-5. [DOI:10.1097/00001756-200203250-00023]
76. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J. 2001; 15(1): 164-70. [DOI:10.1096/fj.00-0129com]
77. Jin BK, Shin DY, Jeong MY, Gwag MR, Baik HW, Yoon KS. Melatonin protects nigral dopaminergic neurons from 1-methyl-4- phenylpyridinium (MPP+) neurotoxicity in rats. Neurosci Lett. 1998; 245(2): 61-4. [DOI:10.1016/S0304-3940(98)00170-0]
78. Kim YS, Joo WS, Jin BK, Cho YH, Baik HH, Park CW. Melatonin protects 6-OHDA-induced neuronal death of nigrostriatal dopaminergic system. Neuro Report. 1998; 68(9): 2387-90. [DOI:10.1097/00001756-199807130-00043]
79. 79 Chiueh CC, Andoh T, Lai AR, Lai E, Krishna G. Neuroprotective strategies in Parkinson's disease: protection against progressive nigral damage induced by free radicals. Neurotox Res. 2000; 2(2-3): 293-310. [DOI:10.1007/BF03033799]
80. Gregory L. Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci. 2008; 19(4-5): 45-316. [DOI:10.1515/REVNEURO.2008.19.4-5.245]
81. Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol. 2004; 14(7): 599-605. [DOI:10.1016/j.cub.2004.03.039]
82. Jacob S, Poeggeler B, Weishaupt JH, Siren AL, Hardeland R, Bahr M, et al. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res. 2002; 33(3): 186-7. [DOI:10.1034/j.1600-079X.2002.02943.x]
83. Tunez I, Montilla P, Del Carmen Munoz M, Feijoo M, Salcedo M. Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington's disease. J Pineal Res. 2004; 37(4): 252-6. [DOI:10.1111/j.1600-079X.2004.00163.x]
84. Wang X, Zhu S, Pei Z, Drozda M, Stavrovskaya IG, Del Signore SJ, et al. Inhibitors of cytochrome c release with therapeutic potential for Huntington's disease. J Neurosci. 2008; 28(38): 9473-85. [DOI:10.1523/JNEUROSCI.1867-08.2008]
85. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine 2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003; 306(3): 954-64. [DOI:10.1124/jpet.103.051797]
86. Luo AH. Aston-Jones G. Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci. 2009; 29(40): 748-60. [DOI:10.1111/j.1460-9568.2008.06606.x]
87. Millan MJ. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 2006; 110(2): 135-370. [DOI:10.1016/j.pharmthera.2005.11.006]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalili Z, Barati Dowom P, Darvishi M, Abdal K. An Overview of the Effects of Melatonin on Nervous System Diseases. Shefaye Khatam. 2019; 7 (3) :61-73
URL: http://shefayekhatam.ir/article-1-1940-en.html

Volume 7, Issue 3 (Summer 2019) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 4130