:: Volume 7, Issue 4 (Autumn 2019) ::
Shefaye Khatam 2019, 7(4): 30-40 Back to browse issues page
Impairments of Neurocognitive Performance in the Smoking Behavior
Hasan Soleimani Rad * , Mahsa Hatam Vishkaiy , Abas Abolghasemi
Department of Psychology, Faculty of Humanities, University of Guilan, Rasht, Iran , h.soleimanirad@outlook.com
Abstract:   (4340 Views)
Introduction: The increasing prevalence of smoking, despite the awareness of its potential damages, may be due to various causes. Impairments of the neurocognitive functions have been identified in a variety of addictive behaviors. Accordingly, the aim of the present study was to investigate neurocognitive performance relative defects in smoking people compared to the non-smoking subjects. Materials and Methods: This investigation is a causal-comparative study. The sample of 50 subjects (aged 21-32 years), 25 male smoker student and 25 non-smokers were chosen through convenience sampling from the University of Guilan. These subjects answered researcher-made cigarette checklist and worked with software tests of Cambridge Gambling, Stroop’s Color-Word, and Tower of London, for evaluation risky decision making, response inhibition, and planning and problem solving. Results: The results of multivariate analysis of variance showed that two groups of smoker and non-smoker people have shown different results of software tests of Cambridge Gambling, Stroop’s Color-Word, and Tower of London. Conclusion: The findings of this study indicate that smokers have a poor relative performance in risky decision-making, response inhibition, and planning and problem-solving. These neurocognitive performance relative defects may explain their smoking behavior despite the awareness of potential damages of smoking.
Keywords: Smoking, Decision Making, Problem Solving
Full-Text [PDF 782 kb]   (1687 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol Health. 2017; 32(8): 1018-36. [DOI:10.1080/08870446.2017.1325890]
2. World Health Organization. A guide for oral disease patients to quit tobacco use. 2017.
3. Chan RC, Shum D, Toulopoulou T, Chen EY. Assessment of executive functions: Review of instruments and identification of critical issues. Arch Clin Neuropsychol. 2008; 23(2): 201-16. [DOI:10.1016/j.acn.2007.08.010]
4. Lechner WV, Sidhu NK, Kittaneh A, Anand A. Interventions with potential to target executive function deficits in addiction: current state of the literature. Curr Opin Psychol. 2019; 30: 24-8. [DOI:10.1016/j.copsyc.2019.01.017]
5. Moreno-López L, Stamatakis EA, Fernández-Serrano MJ, Gómez-Río M, Rodríguez-Fernández A, Pérez-García M, et al. Neural correlates of hot and cold executive functions in polysubstance addiction: association between neuropsychological performance and resting brain metabolism as measured by positron emission tomography. Psychiatry Res. 2012; 203(2-3): 214-21. [DOI:10.1016/j.pscychresns.2012.01.006]
6. Domínguez-Salas S, Diaz-Batanero C, Lozano-Rojas OM, Verdejo-García A. Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neurosci Biobehav Rev. 2016; 71: 772-801. [DOI:10.1016/j.neubiorev.2016.09.030]
7. Pentz MA, Riggs NR, Warren CM. Improving substance use prevention efforts with executive function training. Drug Alcohol Depend. 2016; 163(1): S54-S9. [DOI:10.1016/j.drugalcdep.2016.03.001]
8. Fino E, Melogno S, Iliceto P, D'Aliesio S, Pinto MA, Candilera G, et al. Executive functions, impulsivity, and inhibitory control in adolescents: A structural equation model. Adv Cogn Psychol. 2014; 10(2): 32-8. [DOI:10.5709/acp-0154-5]
9. VandenBos GR. APA dictionary of psychology: American Psychological Association. 2015. [DOI:10.1037/14646-000]
10. Matsumoto DE. The cambridge dictionary of psychology: Cambridge University Press. 2009.
11. Dai F, Yuan L, Fang J, Zhang Q, Wang K. Impaired decision making under risky conditions in the acute phase of Graves' thyroitoxicosis. Neurosci Lett. 2017; 661: 1-4. [DOI:10.1016/j.neulet.2017.08.058]
12. Yang Q, Zhao D, Wu Y, Tang P, Gu R, Luo Y-j. Differentiating the influence of incidental anger and fear on risk decision-making. Physiol Behav. 2018; 184: 179-88. [DOI:10.1016/j.physbeh.2017.11.028]
13. Riedijk L, Harakeh Z. Imitating the risky decision-making of peers: an experimental study among emerging adults. Emerg Adulthood. 2018; 6(4): 255-65. [DOI:10.1177/2167696817722918]
14. Bazinet AD. fMRI correlates of risky decision-making in adolescent alcohol users: the role of abstinence. UC San Diego. 2013.
15. Reyna VF, Zayas VE. The neuroscience of risky decision making. American Psychological Association. 2014. [DOI:10.1037/14322-000]
16. Deng JV, Orsini CA, Shimp KG, Setlow B. MeCP2 expression in a rat model of risky decision making. Neuroscience. 2018; 369: 212-21. [DOI:10.1016/j.neuroscience.2017.11.016]
17. Fecteau S, Agosta S, Hone-Blanchet A, Fregni F, Boggio P, Ciraulo D, et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014; 140: 78-84. [DOI:10.1016/j.drugalcdep.2014.03.036]
18. Buelow MT, Suhr JA. Risky decision making in smoking and nonsmoking college students: examination of iowa gambling task performance by deck type selections. Appl Neuropsychol Child. 2014; 3(1): 38-44. [DOI:10.1080/21622965.2012.691065]
19. Dean AC, Sugar CA, Hellemann G, London ED. Is all risk bad? Young adult cigarette smokers fail to take adaptive risk in a laboratory decision-making test. Psychopharmacology (Berl). 2011; 215(4): 801-11. [DOI:10.1007/s00213-011-2182-y]
20. Swick D, Ashley V, Turken U. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008; 9(1): 102. doi: 10.1186/1471-2202-9-102. [DOI:10.1186/1471-2202-9-102]
21. Chaarani B, Spechler PA, Hudson KE, Foxe JJ, Potter AS, Garavan H. The neural basis of response inhibition and substance abuse. The Wiley Handbook of Cognitive Control. 2017. [DOI:10.1002/9781118920497.ch32]
22. Aston-Jones G, Gold JI. How we say no: norepinephrine, inferior frontal gyrus, and response inhibition. Biol Psychiatry. 2009; 65(7): 548-9. [DOI:10.1016/j.biopsych.2009.01.022]
23. Verbruggen F. Response inhibition. encyclopedia of personality and individual differences. Springer International Publishing. 2017. [DOI:10.1007/978-3-319-28099-8_851-1]
24. Dawson P, Guare R. Executive skills in children and adolescents: a practical guide to assessment and intervention. Guilford Publications. 2018.
25. Thomsen KR, Osterland TB, Hesse M, Ewing SWF. The intersection between response inhibition and substance use among adolescents. Addict Behav. 2018; 78: 228-30. [DOI:10.1016/j.addbeh.2017.11.043]
26. Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014; 39(3): 149-69. [DOI:10.1503/jpn.130052]
27. Smith JL, Mattick RP, Jamadar SD, Iredale JM. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014; 145: 1-33. [DOI:10.1016/j.drugalcdep.2014.08.009]
28. Forstmann BU, Alkemade A. The neurochemistry of response inhibition. The Wiley Handbook of Cognitive Control. 2017. [DOI:10.1002/9781118920497.ch16]
29. Galván A, Poldrack RA, Baker CM, McGlennen KM, London ED. Neural correlates of response inhibition and cigarette smoking in late adolescence. Neuropsychopharmacology. 2011; 36(5): 970-8. [DOI:10.1038/npp.2010.235]
30. Hoffman WF, Schwartz DL, Huckans MS, McFarland BH, Meiri G, Stevens AA, et al. Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacology (Berl). 2008; 201(2): 183-93. [DOI:10.1007/s00213-008-1261-1]
31. Dager A, Squeglia L, Castro N, Tapert SF. Addiction and the human adolescent brain. Biological Research on Addiction. Comprehensive Addictive Behaviors and Disorders. 2013; 2: 353-64. [DOI:10.1016/B978-0-12-398335-0.00036-4]
32. Anderson P, Anderson V, Lajoie G. The tower of London test: Validation and standardization for pediatric populatons. Clin Neuropsychol. 1996; 10(1): 54-65. [DOI:10.1080/13854049608406663]
33. Chung HJ, Weyandt LL, Swentosky A. The physiology of executive functioning. Handbook of executive functioning. Springer. 2014. [DOI:10.1007/978-1-4614-8106-5_2]
34. Farhadian M, Akbarfahimi M, Abharian PH, Hosseini SG, Shokri S. Assessment of executive functions in methamphetamine-addicted individuals: Emphasis on duration of addiction and abstinence. Basic Clin Neurosci. 2017; 8(2): 147-51. [DOI:10.18869/nirp.bcn.8.2.147]
35. Miller PM, Ball S, Petry N, Kavanagh D, Bates M, Blume A, et al. Comprehensive addictive behaviors and disorders, volume 2: biological research on addiction. Elsevier. 2013.
36. Schiffer B, Müller BW, Scherbaum N, Forsting M, Wiltfang J, Leygraf N, et al. Impulsivity-related brain volume deficits in schizophrenia-addiction comorbidity. Brain. 2010; 133(10): 3093-103. [DOI:10.1093/brain/awq153]
37. Davydov DM, Polunina AG. Heroin abusers' performance on the Tower of London Test relates to the baseline EEG alpha 2 mean frequency shifts. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28(7): 1143-52. [DOI:10.1016/j.pnpbp.2004.06.006]
38. Yakir A, Rigbi A, Kanyas K, Pollak Y, Kahana G, Karni O, et al. Why do young women smoke? III. Attention and impulsivity as neurocognitive predisposing factors. Eur Neuropsychopharmacol. 2007; 17(5): 339-51. [DOI:10.1016/j.euroneuro.2006.09.004]
39. Gall MD, Borg WR, Gall JP. Educational research: an introduction. Longman Publishing. 1996.
40. Institute S-BSR. Gamberig gambling task. V.5.0 ed: Sina-Behavioral Sciences Research Institute. 2017.
41. Institute S-BSR. Simple stroop test V.5.0 ed: Sina-Behavioral Sciences Research Institute. 2017.
42. Institute S-BSR. Tower of london test. V.5.0 ed: Sina-Behavioral Sciences Research Institute. 2017.
43. Pinel JP. Biopsychology. Pearson Education. 2011.
44. Anokhin AP, Golosheykin S. Neural correlates of response inhibition in adolescents prospectively predict regular tobacco smoking. Dev Neuropsychol. 2016; 41(1-2): 22-37. [DOI:10.1080/87565641.2016.1195833]
45. Dinur-Klein L, Kertzman S, Rosenberg O, Kotler M, Zangen A, Dannon PN. Response inhibition and sustained and attention in heavy smokers versus non-smokers. Isr J Psychiatry Relat Sci. 2014; 51(4): 240-6.
46. Xin Z, Ting LX, Yi ZX, Li D, Bao ZA. Response inhibition of cigarette-related cues in male light smokers: behavioral evidence using a two-choice oddball paradigm. Front Psychol. 2015; 6: 1506. doi: 10.3389/fpsyg.2015.01506. [DOI:10.3389/fpsyg.2015.01506]
47. Tzelgov J, Porat Z, Henik A. Automaticity and consciousness: is perceiving the word necessary for reading it? Am J Psychol. 1997; 110(3): 429-48. [DOI:10.2307/1423567]
48. Goldstein S, Naglieri JA. Executive functioning. A Goldstein, Sam. 2014. [DOI:10.1007/978-1-4614-8106-5]
49. Bernhard D. Cigarette smoke toxicity: linking individual chemicals to human diseases: John Wiley & Sons; 2011. [DOI:10.1002/9783527635320]

XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 4 (Autumn 2019) Back to browse issues page