[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 9, Issue 2 (Spring 2021) ::
Shefaye Khatam 2021, 9(2): 119-139 Back to browse issues page
The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions
Samira Ramazi, Fatemeh Arani, Atlasi Safaei, Zeinab Abbasi, Zahra Heidari, Hanieh Ghasemian nafchi, Homa Mohammadsadeghi, Fariba Karimzadeh *
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran , karimzade.f@iums.ac.ir
Abstract:   (1808 Views)
Introduction: Astrocytes are cells with distinct morphological and functional properties in certain areas of the brain and play regulatory roles, such as neurogenesis, synaptogenesis, control of the blood-brain barrier permeability, and maintaining extracellular homeostasis. Moreover, astrocytes play a key role in the development and modulation of neural circuits through communicating with axons, dendrites, and synapses according to the needs of the surrounding cells. Furthermore, astrocytes play an essential role in synaptic plasticity, and memory formation via the modulation of neural function. Mature astrocytes are activated following central nervous system damage and changed to reactive astrocytes type A1 and A2. Supporting roles of reactive astrocytes may shift to toxic functions and finally cause the progression of neurological diseases. Neurotransmitter disorder, abnormal brain development, and regeneration of synaptic structures are observed in the brains of patients with neuropsychological diseases. Extensive studies have pointed to the role of astrocytes in depression, schizophrenia, and drug dependence. On the other hand, astrocytes are an important factor in neuronal damage in neurodegenerative diseases. Neurological and radiological studies have shown that these diseases are associated with severe inflammation and astrocytes are among the most important cells that cause inflammation. Reactive astrocytes play a role in the pathology of various neurological diseases, such as Alzheimer's disease, Parkinson's disease, lateral amyotrophic sclerosis, multiple sclerosis, and Huntington's. Alterations in neurotransmitters, cellular connections, receptors, signaling pathways (especially in the field of inflammation), secretion of inflammatory factors, aqueous channels, secretion of growth factors, protein deposition, ionic homeostasis, and finally, changes in the size and number of astrocytes have been considered as the most important pathogenic mechanisms in astrocytes. Conclusion: Regulation of reactive astrocytes could be an effective clinical strategy for the treatment of neurological and psychological diseases.
Keywords: Astrocytes, Neurodegenerative Diseases, Mental Disorders
Full-Text [PDF 888 kb]   (980 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurophysiopathology
1. Siracusa R, Fusco R, Cuzzocrea SJFip. Astrocytes: role and functions in brain pathologies. 2019; 10:1114. [DOI:10.3389/fphar.2019.01114]
2. Zhou B, Zuo YX, Jiang RTJCn, therapeutics. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. 2019; 25(6): 665-73. [DOI:10.1111/cns.13123]
3. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano GJJobp. Astrocyte-neuron interactions in neurological disorders. 2009; 35(4): 317-36. [DOI:10.1007/s10867-009-9157-9]
4. Verkhratsky A, Bush NAO, Nedergaard M, Butt AJN. The special case of human astrocytes. 2018; 1(1): 21-9. [DOI:10.3390/neuroglia1010004]
5. Hu X, Yuan Y, Wang D, Su ZJBrb. Heterogeneous astrocytes: active players in CNS. 2016; 125: 1-18. [DOI:10.1016/j.brainresbull.2016.03.017]
6. Liu B, Teschemacher A, Kasparov SJJonr. Neuroprotective potential of astroglia. 2017; 95(11): 2126-39. [DOI:10.1002/jnr.24140]
7. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra AJN. Gliotransmitters travel in time and space. 2014; 81(4): 728-39. [DOI:10.1016/j.neuron.2014.02.007]
8. Molina-Gonzalez I, Miron VEJNl. Astrocytes in myelination and remyelination. 2019; 713: 134532. [DOI:10.1016/j.neulet.2019.134532]
9. Lotfinia M, Lotfinia AA, Khodaie B, Ahmadi M, Asaadi S, Jafarian M. Propagation of Spreading Depression: A Review of Different Hypothesis The Neuroscience Journal of Shefaye Khatam. 2014; 2(3): 53-64. [DOI:10.18869/acadpub.shefa.2.3.53]
10. Farmer WT, Murai KJFicn. Resolving astrocyte heterogeneity in the CNS. 2017; 11: 300. [DOI:10.3389/fncel.2017.00300]
11. Filous AR, Silver JJPin. Targeting astrocytes in CNS injury and disease: a translational research approach. 2016; 144: 173-87. [DOI:10.1016/j.pneurobio.2016.03.009]
12. Bolton MM, Eroglu CJCoin. Look who is weaving the neural web: glial control of synapse formation. 2009; 19(5): 491-7. [DOI:10.1016/j.conb.2009.09.007]
13. Van den Pol A, Spencer DJN. Differential neurite growth on astrocyte substrates: interspecies facilitation in green fluorescent protein-transfected rat and human neurons. 1999; 95(2): 603-16. [DOI:10.1016/S0306-4522(99)00430-3]
14. Slezak M, Pfrieger FWJTin. New roles for astrocytes: regulation of CNS synaptogenesis. 2003; 26(10): 531-5. [DOI:10.1016/j.tins.2003.08.005]
15. Emirandetti A, Zanon RG, Sabha Jr M, de Oliveira ALRJBr. Astrocyte reactivity influences the number of presynaptic terminals apposed to spinal motoneurons after axotomy. 2006; 1095(1): 35-42. [DOI:10.1016/j.brainres.2006.04.021]
16. Chung W-S, Allen NJ, Eroglu CJCSHpib. Astrocytes control synapse formation, function, and elimination. 2015; 7(9): a020370. [DOI:10.1101/cshperspect.a020370]
17. Varela-Echevarría A, Vargas-Barroso V, Lozano-Flores C, Larriva-Sahd JJFin. Is there evidence for myelin modeling by astrocytes in the normal adult brain. 2017; 11: 75. [DOI:10.3389/fnana.2017.00075]
18. Dutta DJ, Woo DH, Lee PR, Pajevic S, Bukalo O, Huffman WC, et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. 2018; 115(46): 11832-7. [DOI:10.1073/pnas.1811013115]
19. Sofroniew MV, Vinters HVJAn. Astrocytes: biology and pathology. 2010; 119(1): 7-35. [DOI:10.1007/s00401-009-0619-8]
20. Anderson CM, Swanson RAJG. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. 2000; 32(1): 1-14. https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W [DOI:10.1002/1098-1136(200010)32:13.0.CO;2-W]
21. Szu JI, Binder DKJFiin. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory. 2016; 10: 8. [DOI:10.3389/fnint.2016.00008]
22. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PGJN. Glutamate-mediated astrocyte-neuron signalling. 1994; 369(6483): 744-7. [DOI:10.1038/369744a0]
23. Moraga-Amaro R, Jerez-Baraona J, Simon F, Stehberg JJJoP-P. Role of astrocytes in memory and psychiatric disorders. 2014; 108(4-6): 240-51. [DOI:10.1016/j.jphysparis.2014.08.005]
24. Bazargani N, Attwell DJNn. Astrocyte calcium signaling: the third wave. 2016; 19(2): 182-9. [DOI:10.1038/nn.4201]
25. Perea G, Navarrete M, Araque AJTin. Tripartite synapses: astrocytes process and control synaptic information. 2009; 32(8): 421-31. [DOI:10.1016/j.tins.2009.05.001]
26. Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka IJIjoms. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. 2015; 16(11): 25959-81. [DOI:10.3390/ijms161125939]
27. Halestrap APJMaom. The SLC16 gene family-structure, role and regulation in health and disease. 2013; 34(2-3): 337-49. [DOI:10.1016/j.mam.2012.05.003]
28. Miller RHJPin. Regulation of oligodendrocyte development in the vertebrate CNS. 2002; 67(6): 451-67. [DOI:10.1016/S0301-0082(02)00058-8]
29. Orentas DM, Miller RHJMn. Regulation of oligodendrocyte development. 1998; 18(3): 247-59. [DOI:10.1007/BF02741302]
30. Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJJJoN. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. 2005; 25(14): 3638-50. [DOI:10.1523/JNEUROSCI.3980-04.2005]
31. Ota Y, Zanetti AT, Hallock RMJNp. The role of astrocytes in the regulation of synaptic plasticity and memory formation. 2013; 2013. [DOI:10.1155/2013/185463]
32. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. 2018; 174(1): 59-71. e14. [DOI:10.1016/j.cell.2018.05.002]
33. Eddleston M, Mucke LJN. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. 1993; 54(1): 15-36. [DOI:10.1016/0306-4522(93)90380-X]
34. Hanisch UKJG. Microglia as a source and target of cytokines. 2002; 40(2): 140-55. [DOI:10.1002/glia.10161]
35. Vasile F, Dossi E, Rouach NJBS, Function. Human astrocytes: structure and functions in the healthy brain. 2017; 222(5). [DOI:10.1007/s00429-017-1383-5]
36. Kanaan NM, Kordower JH, Collier TJJG. Age and region‐specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine exposure in monkeys. 2008; 56(11): 1199-214. [DOI:10.1002/glia.20690]
37. Molofsky AV, Krenick R, Ullian E, Tsai H-h, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. 2012; 26(9): 891-907. [DOI:10.1101/gad.188326.112]
38. Rothhammer V, Quintana FJ, editors. Control of autoimmune CNS inflammation by astrocytes. Seminars in immunopathology; 2015: Springer. [DOI:10.1007/s00281-015-0515-3]
39. Wang Z, Li D-D, Liang Y-Y, Wang D-S, Cai N-SJAPS. Activation of astrocytes by advanced glycation end products: cytokines induction and nitric oxide release. 2002; 23(11): 974-80.
40. Yan SD, Bierhaus A, Nawroth PP, Stern DMJJoAsD. RAGE and Alzheimer's disease: a progression factor for amyloid-β-induced cellular perturbation? 2009; 16(4): 833-43. [DOI:10.3233/JAD-2009-1030]
41. Cheng W, Chen GJMoi. Chemokines and chemokine receptors in multiple sclerosis. 2014; 2014. [DOI:10.1155/2014/659206]
42. Petković F, Blaževski J, Momčilović M, Mostarica Stojkovic M, Miljković DJI, biology c. Nitric oxide inhibits CXCL12 expression in neuroinflammation. 2013; 91(6): 427-34. [DOI:10.1038/icb.2013.23]
43. Colombo E, Farina CJTii. Astrocytes: key regulators of neuroinflammation. 2016; 37(9): 608-20. [DOI:10.1016/j.it.2016.06.006]
44. Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, et al. The role of JAK-STAT signaling within the CNS. 2013; 2(1): e22925. [DOI:10.4161/jkst.22925]
45. Katebi A, Katebi Y, Golab F. Effects of Ecstasy on the Nervous System. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 124-9. [DOI:10.18869/acadpub.shefa.5.2.124]
46. Götz M, Huttner WBJNrMcb. The cell biology of neurogenesis. 2005; 6(10): 777-88. [DOI:10.1038/nrm1739]
47. Behroozi Z, Atefimanesh P, Karimzadeh F. Structural and Metabolic Biomarkers in Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 94-108. [DOI:10.29252/shefa.6.2.94]
48. Sajadian A, Jafarian M, Khodaie B, Mohammad Sadeghi S, Ghaemi A. Reduction of Neuroinflammation in Epilepsy by Using Induced Pluripotent Stem (iPS) Cells-Derived Astrocytes. The Neuroscience Journal of Shefaye Khatam. 2014; 2(2): 56-64. [DOI:10.18869/acadpub.shefa.2.2.56]
49. Khaledi S, Ahmadi S. Hepatic Encephalopathy: Pathogenesis and Treatment Strategies .The Neuroscience Journal of Shefaye Khatam. 2019; 7(1): 77-90. [DOI:10.29252/shefa.7.1.77]
50. Lotfi R, Yari K. The Role of Semaphorins and their Receptors in the Immune System and their Relation to Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(4): 75-92. [DOI:10.29252/shefa.6.4.75]
51. Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MSJG. Astrocytic transforming growth factor‐beta signaling reduces subacute neuroinflammation after stroke in mice. 2014; 62(8): 1227-40. [DOI:10.1002/glia.22675]
52. Yun-peng S, Xu-dong X, Xing-xiang W, Jun-zhu C, Jian-hua Z, Qian-min T, et al. A novel splice mutation of HERG in a Chinese family with long QT syndrome. 2005; 6(7): 626. [DOI:10.1631/jzus.2005.B0626]
53. Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia. 1999; 26(1): 1-11. https://doi.org/10.1002/(SICI)1098-1136(199903)26:1<1::AID-GLIA1>3.0.CO;2-Z [DOI:10.1002/(SICI)1098-1136(199903)26:13.0.CO;2-Z]
54. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. Journal of Neuroscience. 2006; 26(10): 2673-83. [DOI:10.1523/JNEUROSCI.4689-05.2006]
55. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proceedings of the National Academy of Sciences. 2001; 98(4): 1964-9. [DOI:10.1073/pnas.98.4.1964]
56. Lerea LS, McCarthy KD. Astroglial cells in vitro are heterogeneous with respect to expression of the α1‐adrenergic receptor. Glia. 1989; 2(3): 135-47. [DOI:10.1002/glia.440020302]
57. Lerea LS, McCarthy KD. Neuron-associated astroglial cells express β-andα1-adrenergic receptors in vitro. Brain Research. 1990; 521(1-2): 7-14. [DOI:10.1016/0006-8993(90)91518-L]
58. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, et al. P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. Journal of Neuroscience. 2008; 28(21): 5473-80. [DOI:10.1523/JNEUROSCI.1149-08.2008]
59. Gallagher CJ, Salter MW. Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. Journal of Neuroscience. 2003; 23(17): 6728-39. [DOI:10.1523/JNEUROSCI.23-17-06728.2003]
60. Zhu Y, Kimelberg HK. Cellular expression of P2Y and β-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8-12 rat hippocampus. Developmental brain research. 2004; 148(1): 77-87. [DOI:10.1016/j.devbrainres.2003.10.014]
61. Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochemical and biophysical research communications. 2013; 441(2): 327-32. [DOI:10.1016/j.bbrc.2013.10.046]
62. Rajkowska G, A Stockmeier C. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Current drug targets. 2013; 14(11): 1225-36. [DOI:10.2174/13894501113149990156]
63. Flores-Barrera E, Thomases DR, Heng L-J, Cass DK, Caballero A, Tseng KY. Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biological psychiatry. 2014; 75(6): 508-16. [DOI:10.1016/j.biopsych.2013.07.033]
64. Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-α. Biological psychiatry. 2004; 56(11): 819-24. [DOI:10.1016/j.biopsych.2004.02.009]
65. Öngür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proceedings of the National Academy of Sciences. 1998; 95(22): 13290-5. [DOI:10.1073/pnas.95.22.13290]
66. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral cortex. 2002; 12(4): 386-94. [DOI:10.1093/cercor/12.4.386]
67. Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biological psychiatry. 2004; 55(6): 563-9. [DOI:10.1016/j.biopsych.2003.11.006]
68. Vickers NJ. Animal communication: when i'm calling you, will you answer too? Current biology. 2017; 27(14): R713-R5. [DOI:10.1016/j.cub.2017.05.064]
69. Vickers NJJCb. Animal communication: when i'm calling you, will you answer too? 2017; 27(14): R713-R5. [DOI:10.1016/j.cub.2017.05.064]
70. Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs EJN. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. 2006; 31(8): 1616-26. [DOI:10.1038/sj.npp.1300982]
71. Öngür D, Pohlman J, Dow AL, Eisch AJ, Edwin F, Heckers S, et al. Electroconvulsive seizures stimulate glial proliferation and reduce expression of Sprouty2 within the prefrontal cortex of rats. 2007; 62(5): 505-12. [DOI:10.1016/j.biopsych.2006.11.014]
72. Lee Y, Gaskins D, Anand A, Shekhar A. Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology. 2007; 191(1): 55-65. [DOI:10.1007/s00213-006-0652-4]
73. John CS, Smith KL, Veer AVT, Gompf HS, Carlezon WA, Cohen BM, et al. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology. 2012; 37(11): 2467-75. [DOI:10.1038/npp.2012.105]
74. Choudary PV, Molnar M, Evans S, Tomita H, Li J, Vawter M, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proceedings of the National Academy of Sciences. 2005; 102(43): 15653-8. [DOI:10.1073/pnas.0507901102]
75. Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. European journal of pharmacology. 2008; 578(2-3): 171-6. [DOI:10.1016/j.ejphar.2007.10.023]
76. Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Frontiers in cellular neuroscience. 2015; 9: 261. [DOI:10.3389/fncel.2015.00261]
77. Kong H, Zeng XN, Fan Y, Yuan ST, Ge S, Xie WP, et al. Aquaporin‐4 knockout exacerbates corticosterone‐induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS neuroscience & therapeutics. 2014; 20(5): 391-402. [DOI:10.1111/cns.12222]
78. Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi YJIjon. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. 2008; 11(8): 1047-61. [DOI:10.1017/S1461145708009000]
79. Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T, et al. Altered expression of neurotrophic factors in patients with major depression. Journal of psychiatric research. 2008; 42(14): 1145-53. [DOI:10.1016/j.jpsychires.2008.01.010]
80. Zhang X, Zhang Z, Xie C, Xi G, Zhou H, Zhang Y, et al. Effect of treatment on serum glial cell line-derived neurotrophic factor in depressed patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2008; 32(3): 886-90. [DOI:10.1016/j.pnpbp.2008.01.004]
81. Evans S, Choudary PV, Neal C, Li J, Vawter M, Tomita H, et al. Dysregulation of the fibroblast growth factor system in major depression. Proceedings of the National Academy of Sciences. 2004; 101(43): 15506-11. [DOI:10.1073/pnas.0406788101]
82. Koyama Y, Tsujikawa K, Matsuda T, Baba A. Intracerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. European Journal of Neuroscience. 2003; 18(4): 887-94. [DOI:10.1046/j.1460-9568.2003.02797.x]
83. Mallei A, Shi B, Mocchetti I. Antidepressant treatments induce the expression of basic fibroblast growth factor in cortical and hippocampal neurons. Molecular pharmacology. 2002; 61(5): 1017-24. [DOI:10.1124/mol.61.5.1017]
84. Martínez-Turrillas R, Del Río J, Frechilla D. Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment. Neuropharmacology. 2005; 49(8): 1178-88. [DOI:10.1016/j.neuropharm.2005.07.006]
85. Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology. 2008; 55(7): 1114-20. [DOI:10.1016/j.neuropharm.2008.07.014]
86. Liu Q, Zhu H-Y, Li B, Wang Y-Q, Yu J, Wu G-C. Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression. Journal of affective disorders. 2012; 141(2-3): 367-72. [DOI:10.1016/j.jad.2012.03.018]
87. Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, et al. Antidepressant drug treatments induce glial cell line‐derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. Journal of neurochemistry. 2001; 79(1): 25-34. [DOI:10.1046/j.1471-4159.2001.00531.x]
88. Allaman I, Fiumelli H, Magistretti PJ, Martin J-L. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology. 2011; 216(1): 75-84. [DOI:10.1007/s00213-011-2190-y]
89. Kittel-Schneider S, Kenis G, Schek J, van den Hove D, Prickaerts J, Lesch KP, et al. Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes. Frontiers in psychiatry. 2012; 3: 33. [DOI:10.3389/fpsyt.2012.00033]
90. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular psychiatry. 2011; 16(6): 634-46. [DOI:10.1038/mp.2010.44]
91. Miguel-Hidalgo JJ, Wilson BA, Hussain S, Meshram A, Rajkowska G, Stockmeier CA. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. Journal of psychiatric research. 2014; 55: 101-9. [DOI:10.1016/j.jpsychires.2014.04.007]
92. Sun J-D, Liu Y, Yuan Y-H, Li J, Chen N-H. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology. 2012; 37(5): 1305-20. [DOI:10.1038/npp.2011.319]
93. Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB, et al. Acute D-serine treatment produces antidepressant-like effects in rodents. International Journal of Neuropsychopharmacology. 2012; 15(8): 1135-48. [DOI:10.1017/S1461145711001386]
94. DiazGranados N, Ibrahim L, Brutsche N, Ameli R, Henter ID, Luckenbaugh DA, et al. Rapid resolution of suicidal ideation after a single infusion of an NMDA antagonist in patients with treatment-resistant major depressive disorder. The Journal of clinical psychiatry. 2010; 71(12): 1605. [DOI:10.4088/JCP.09m05327blu]
95. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of general psychiatry. 2006; 63(8): 856-64. [DOI:10.1001/archpsyc.63.8.856]
96. Toro CT, Hallak JE, Dunham JS, Deakin JF. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neuroscience letters. 2006; 404(3): 276-81. [DOI:10.1016/j.neulet.2006.05.067]
97. Feresten AH, Barakauskas V, Ypsilanti A, Barr AM, Beasley CL. Increased expression of glial fibrillary acidic protein in prefrontal cortex in psychotic illness. Schizophrenia research. 2013; 150(1): 252-7. [DOI:10.1016/j.schres.2013.07.024]
98. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and molecular neurobiology. 2006; 26(4-6): 363-82. [DOI:10.1007/s10571-006-9062-8]
99. Laruelle M. Schizophrenia: from dopaminergic to glutamatergic interventions. Current opinion in pharmacology. 2014; 14: 97-102. [DOI:10.1016/j.coph.2014.01.001]
100. Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology. 2005; 179(1): 54-67. [DOI:10.1007/s00213-005-2210-x]
101. Karasawa J-i, Hashimoto K, Chaki S. D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behavioural brain research. 2008; 186(1): 78-83. [DOI:10.1016/j.bbr.2007.07.033]
102. Bado P, Madeira C, Vargas-Lopes C, Moulin TC, Wasilewska-Sampaio AP, Maretti L, et al. Effects of low-dose D-serine on recognition and working memory in mice. Psychopharmacology. 2011; 218(3): 461-70. [DOI:10.1007/s00213-011-2330-4]
103. Kawaura K, Koike H, Kinoshita K, Kambe D, Kaku A, Karasawa J-i, et al. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats. Behavioural brain research. 2015; 278: 186-92. [DOI:10.1016/j.bbr.2014.09.046]
104. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. The American journal of psychiatry. 1991.
105. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of general psychiatry. 1994; 51(3): 199-214. [DOI:10.1001/archpsyc.1994.03950030035004]
106. Balu DT, Basu AC, Corradi JP, Cacace AM, Coyle JT. The NMDA receptor co-agonists, D-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiology of disease. 2012; 45(2): 671-82. [DOI:10.1016/j.nbd.2011.10.006]
107. Van Horn MR, Sild M, Ruthazer ES. D-serine as a gliotransmitter and its roles in brain development and disease. Frontiers in cellular neuroscience. 2013; 7: 39. [DOI:10.3389/fncel.2013.00039]
108. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proceedings of the National Academy of Sciences. 1999; 96(23): 13409-14. [DOI:10.1073/pnas.96.23.13409]
109. Panatier A. Theodosis DT, Mothet JP, Toquet B, Pollegioni L, Poulain DA, and Oliet SHR. Glia-derived d-serine controls NMDA receptor activity and synaptic memory Cell. 2006. [DOI:10.1016/j.cell.2006.02.051]
110. van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Frontiers in cellular neuroscience. 2015; 8: 466. [DOI:10.3389/fncel.2014.00466]
111. Beardsley PM, Hauser KF. Glial modulators as potential treatments of psychostimulant abuse. Advances in pharmacology. 69: Elsevier; 2014. p. 1-69. [DOI:10.1016/B978-0-12-420118-7.00001-9]
112. Hebert MA, O'CALLAGHAN JP. Protein phosphorylation cascades associated with methamphetamine‐induced glial activation. Annals of the New York Academy of Sciences. 2000; 914(1): 238-62. [DOI:10.1111/j.1749-6632.2000.tb05200.x]
113. Fattore L, Puddu M, Picciau S, Cappai A, Fratta W, Serra G, et al. Astroglial in vivo response to cocaine in mouse dentate gyrus: a quantitative and qualitative analysis by confocal microscopy. Neuroscience. 2002; 110(1): 1-6. [DOI:10.1016/S0306-4522(01)00598-X]
114. Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E. Different glial response to methamphetamine-and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn-Schmiedeberg's archives of pharmacology. 2003; 367(5): 490-9. [DOI:10.1007/s00210-003-0747-y]
115. Alonso E, Garrido E, Díez-Fernández C, Pérez-García C, Herradón G, Ezquerra L, et al. Yohimbine prevents morphine-induced changes of glial fibrillary acidic protein in brainstem and α2-adrenoceptor gene expression in hippocampus. Neuroscience letters. 2007; 412(2): 163-7. [DOI:10.1016/j.neulet.2006.11.002]
116. Fujio M, Nakagawa T, Sekiya Y, Ozawa T, Suzuki Y, Minami M, et al. Gene transfer of GLT‐1, a glutamate transporter, into the nucleus accumbens shell attenuates methamphetamine‐and morphine‐induced conditioned place preference in rats. European Journal of Neuroscience. 2005; 22(11): 2744-54. [DOI:10.1111/j.1460-9568.2005.04467.x]
117. Narita M, Miyatake M, Shibasaki M, Tsuda M, Koizumi S, Narita M, et al. Long‐lasting change in brain dynamics induced by methamphetamine: enhancement of protein kinase C‐dependent astrocytic response and behavioral sensitization. Journal of neurochemistry. 2005; 93(6): 1383-92. [DOI:10.1111/j.1471-4159.2005.03097.x]
118. Narita M, Miyatake M, Narita M, Shibasaki M, Shindo K, Nakamura A, et al. Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology. 2006; 31(11): 2476-88. [DOI:10.1038/sj.npp.1301007]
119. Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug reward and relapse: a review. Neuroscience & Biobehavioral Reviews. 2010; 35(2): 157-71. [DOI:10.1016/j.neubiorev.2009.11.009]
120. Liddelow SA, Barres BAJI. Reactive astrocytes: production, function, and therapeutic potential. 2017; 46(6): 957-67. [DOI:10.1016/j.immuni.2017.06.006]
121. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. 2017; 541(7638): 481-7. [DOI:10.1038/nature21029]
122. Sahab Negah S, Khaksar Z, Modarres Mousavi M, Jahanbazi Jahan-Abad A, Eshaghabadi A, Hossini Ravandi H. P16: The Role of Astrocyte in Traumatic Brain Injury The Neuroscience Journal of Shefaye Khatam. 2015; 3(4): 43.
123. Borhani-Haghighi M, Alipour F, Shiri E, Shiri A. P15: Astrocyte Dysfunction in Epilepsy The Neuroscience Journal of Shefaye Khatam. 2018; 6(3): 42.
124. Adel Rastkhiz A. P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 120.
125. Sahab Negah S, Khaksar Z, Mohammad Zadeh E, Modarres Mousavi M, Jahanbazi Jahan-Abad A. P10: Reactive Glial Cells for Brain Injury The Neuroscience Journal of Shefaye Khatam. 2015; 3(4)37.
126. Lotfinia AA, Khodaie B, Lotfinia M, Ahmadi M, Jafarian M. Roles of Excitatory and Inhibitory Receptors in Spreading Depression The Neuroscience Journal of Shefaye Khatam. 2013; 1(3): 38-48. [DOI:10.18869/acadpub.shefa.1.3.38]
127. Vakalopoulos CJJoAsD. Alzheimer's disease: the alternative serotonergic hypothesis of cognitive decline. 2017; 60(3): 859-66. [DOI:10.3233/JAD-170364]
128. McGeer PL, McGeer EGJJon. Local neuroinflammation and the progression of Alzheimer's disease. 2002; 8(6): 529-38. [DOI:10.1080/13550280290100969]
129. Phillips EC, Croft CL, Kurbatskaya K, O'Neill MJ, Hutton ML, Hanger DP, et al. Astrocytes and neuroinflammation in Alzheimer's disease. Portland Press Ltd.; 2014. [DOI:10.1042/BST20140155]
130. Pihlaja R, Koistinaho J, Kauppinen R, Sandholm J, Tanila H, Koistinaho MJG. Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes. 2011; 59(11): 1643-57. [DOI:10.1002/glia.21212]
131. Cole SL, Vassar RJMn. The Alzheimer's disease β-secretase enzyme, BACE1. 2007; 2(1): 1-25. [DOI:10.1186/1750-1326-2-22]
132. Acosta C, Anderson HD, Anderson CMJJonr. Astrocyte dysfunction in Alzheimer disease. 2017; 95(12): 2430-47. [DOI:10.1002/jnr.24075]
133. Vincent AJ, Gasperini R, Foa L, Small DHJJoAsD. Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity. 2010; 22(3): 699-714. [DOI:10.3233/JAD-2010-101089]
134. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. 2014; 20(8): 886-96. [DOI:10.1038/nm.3639]
135. Kamphuis W, Kooijman L, Orre M, Stassen O, Pekny M, Hol EMJG. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild‐type mice and changes the transcriptional response of reactive glia in mouse model for A lzheimer's disease. 2015; 63(6): 1036-56. [DOI:10.1002/glia.22800]
136. Kashon ML, Ross GW, O'Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, et al. Associations of cortical astrogliosis with cognitive performance and dementia status. 2004; 6(6): 595-604. [DOI:10.3233/JAD-2004-6604]
137. Farina C, Aloisi F, Meinl EJTii. Astrocytes are active players in cerebral innate immunity. 2007; 28(3): 138-45. [DOI:10.1016/j.it.2007.01.005]
138. Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen AJJoc, medicine m. Amyloid‐β oligomers set fire to inflammasomes and induce Alzheimer's pathology. 2008; 12(6a): 2255-62. [DOI:10.1111/j.1582-4934.2008.00496.x]
139. Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, et al. Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. 2014; 35(12): 2746-60. [DOI:10.1016/j.neurobiolaging.2014.06.004]
140. Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani JJPotNAoS. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. 1995; 92(7): 3032-5. [DOI:10.1073/pnas.92.7.3032]
141. Zhao J, O'Connor T, Vassar RJJon. The contribution of activated astrocytes to Aβ production: implications for Alzheimer's disease pathogenesis. 2011; 8(1): 1-17. [DOI:10.1186/1742-2094-8-150]
142. Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, Lashuel HA, et al. Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. 2010; 30(9): 3326-38. [DOI:10.1523/JNEUROSCI.5098-09.2010]
143. Guo Z, Cupples L, Kurz A, Auerbach S, Volicer L, Chui H, et al. Head injury and the risk of AD in the MIRAGE study. 2000; 54(6): 1316-23. [DOI:10.1212/WNL.54.6.1316]
144. Siman R, Card JP, Nelson RB, Davis LGJN. Expression of β-amyloid precursor protein in reactive astrocytes following neuronal damage. 1989; 3(3): 275-85. [DOI:10.1016/0896-6273(89)90252-3]
145. Nadler Y, Alexandrovich A, Grigoriadis N, Hartmann T, Rao KSJ, Shohami E, et al. Increased expression of the γ‐secretase components presenilin‐1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. 2008; 56(5): 552-67. [DOI:10.1002/glia.20638]
146. Kao AW, Racine CA, Quitania LC, Kramer JH, Christine CW, Miller BLJAd, et al. Cognitive and neuropsychiatric profile of the synucleinopathies: Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. 2009; 23(4): 365. [DOI:10.1097/WAD.0b013e3181b5065d]
147. Albin RLJCigm. Parkinson's disease: background, diagnosis, and initial management. 2006; 22(4): 735-51. [DOI:10.1016/j.cger.2006.06.003]
148. Lieu CA, Chinta SJ, Rane A, Andersen JKJPo. Age-related behavioral phenotype of an astrocytic monoamine oxidase-B transgenic mouse model of Parkinson's disease. 2013; 8(1): e54200. [DOI:10.1371/journal.pone.0054200]
149. Ko C, Eriksson L, Okuno E, Schwarcz RJN. Localization of quinolinic acid metabolizing enzymes in the rat brain. Immunohistochemical studies using antibodies to 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase. 1988; 27(1): 49-76. [DOI:10.1016/0306-4522(88)90219-9]
150. Halliday GM, Stevens CHJMD. Glia: initiators and progressors of pathology in Parkinson's disease. 2011; 26(1): 6-17. [DOI:10.1002/mds.23455]
151. Ciesielska A, Joniec I, Kurkowska-Jastrzębska I, Cudna A, Przybyłkowski A, Członkowska A, et al. The impact of age and gender on the striatal astrocytes activation in murine model of Parkinson's disease. 2009; 58(11): 747-53. [DOI:10.1007/s00011-009-0026-6]
152. Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. 2010; 285(12): 9262-72. [DOI:10.1074/jbc.M109.081125]
153. Barcia C, Ros C, Annese V, Gomez A, Ros-Bernal F, Aguado-Llera D, et al. IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. 2012; 3(8): e379. [DOI:10.1038/cddis.2012.123]
154. Gu X-L, Long C-X, Sun L, Xie C, Lin X, Cai HJMb. Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice. 2010; 3(1): 1-16. [DOI:10.1186/1756-6606-3-12]
155. Sriram K, Benkovic SA, Hebert MA, Miller DB, O'Callaghan JPJJobc. Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? 2004; 279(19): 19936-47. [DOI:10.1074/jbc.M309304200]
156. L'episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, et al. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. 2011; 6(1): 1-29. [DOI:10.1186/1750-1326-6-49]
157. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. 2011; 377(9769): 942-55. [DOI:10.1016/S0140-6736(10)61156-7]
158. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. 2011; 134(9): 2627-41. [DOI:10.1093/brain/awr193]
159. Papadeas ST, Kraig SE, O'Banion C, Lepore AC, Maragakis NJJPotNAoS. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. 2011; 108(43): 17803-8. [DOI:10.1073/pnas.1103141108]
160. Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, et al. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. 2007; 104(37): 14825-30. [DOI:10.1073/pnas.0705046104]
161. Martorana F, Brambilla L, Valori CF, Bergamaschi C, Roncoroni C, Aronica E, et al. The BH4 domain of Bcl-XL rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. 2012; 21(4): 826-40. [DOI:10.1093/hmg/ddr513]
162. Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, et al. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1G93A mice. 2006; 201(1): 120-30. [DOI:10.1016/j.expneurol.2006.03.028]
163. Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. 2008; 11(11): 1294-301. [DOI:10.1038/nn.2210]
164. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M, et al. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. 2009; 106(49): 20960-5. [DOI:10.1073/pnas.0911405106]
165. Phatnani HP, Guarnieri P, Friedman BA, Carrasco MA, Muratet M, O'Keeffe S, et al. Intricate interplay between astrocytes and motor neurons in ALS. 2013; 110(8): E756-E65. [DOI:10.1073/pnas.1222361110]
166. Allaman I, Bélanger M, Magistretti PJJTin. Astrocyte-neuron metabolic relationships: for better and for worse. 2011; 34(2): 76-87. [DOI:10.1016/j.tins.2010.12.001]
167. Hashioka S, Klegeris A, Schwab C, McGeer PLJNoa. Interferon-γ-dependent cytotoxic activation of human astrocytes and astrocytoma cells. 2009; 30(12): 1924-35. [DOI:10.1016/j.neurobiolaging.2008.02.019]
168. Hashioka S, Klegeris A, Qing H, McGeer PLJNod. STAT3 inhibitors attenuate interferon-γ-induced neurotoxicity and inflammatory molecule production by human astrocytes. 2011; 41(2): 299-307. [DOI:10.1016/j.nbd.2010.09.018]
169. Shibata N, Yamamoto T, Hiroi A, Omi Y, Kato Y, Kobayashi MJN. Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1‐mutated amyotrophic lateral sclerosis. 2010; 30(4): 353-60. [DOI:10.1111/j.1440-1789.2009.01078.x]
170. McFarland HF, Martin RJNi. Multiple sclerosis: a complicated picture of autoimmunity. 2007; 8(9): 913-9. [DOI:10.1038/ni1507]
171. Brosnan CF, Raine CSJG. The astrocyte in multiple sclerosis revisited. 2013; 61(4): 453-65. [DOI:10.1002/glia.22443]
172. Stüve O, Youssef S, Slavin AJ, King CL, Patarroyo JC, Hirschberg DL, et al. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. 2002; 169(12): 6720-32. [DOI:10.4049/jimmunol.169.12.6720]
173. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. 2015; 12(1): 1-18. [DOI:10.1186/s12974-015-0335-3]
174. Blaževski J, Petković F, Momčilović M, Jevtic B, Miljković D, Stojković MMJI. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis. 2013; 218(9): 1192-9. [DOI:10.1016/j.imbio.2013.04.004]
175. Ross CA, Tabrizi SJJTLN. Huntington's disease: from molecular pathogenesis to clinical treatment. 2011; 10(1): 83-98. [DOI:10.1016/S1474-4422(10)70245-3]
176. Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-JJTJocb. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. 2005; 171(6): 1001-12. [DOI:10.1083/jcb.200508072]
177. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. 2010; 19(15): 3053-67. [DOI:10.1093/hmg/ddq212]
178. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. Astrocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. 2014; 17(5): 694-703. [DOI:10.1038/nn.3691]
179. Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li SJPotNAoS. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. 2009; 106(52): 22480-5. [DOI:10.1073/pnas.0911503106]
180. Bradford J, Shin J-Y, Roberts M, Wang C-E, Sheng G, Li S, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. 2010; 285(14): 10653-61. [DOI:10.1074/jbc.M109.083287]
181. Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn RJFinc. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. 2013; 7: 188. [DOI:10.3389/fncir.2013.00188]
182. Vis J, Nicholson L, Faull R, Evans WH, Severs N, Green CJCbi. Connexin expression in Huntington's diseased human brain. 1998; 22(11-12): 837-47. [DOI:10.1006/cbir.1998.0388]
183. Hsiao H-Y, Chen Y-C, Chen H-M, Tu P-H, Chern YJHmg. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington's disease. 2013; 22(9): 1826-42. [DOI:10.1093/hmg/ddt036]
184. Chou S-Y, Weng J-Y, Lai H-L, Liao F, Sun SH, Tu P-H, et al. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. 2008; 28(13): 3277-90. [DOI:10.1523/JNEUROSCI.0116-08.2008]
185. M Saito V, M Rezende R, L Teixeira AJCn. Cannabinoid modulation of neuroinflammatory disorders. 2012; 10(2): 159-66. [DOI:10.2174/157015912800604515]
186. Sagredo O, González S, Aroyo I, Pazos MR, Benito C, Lastres‐Becker I, et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. 2009; 57(11): 1154-67. [DOI:10.1002/glia.20838]
187. Schon EA, Przedborski SJN. Mitochondria: the next (neurode) generation. 2011; 70(6): 1033-53. [DOI:10.1016/j.neuron.2011.06.003]
188. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, et al. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. 2012; 44(3): 249-58. [DOI:10.1093/abbs/gmr125]
189. Arregui L, Benítez JA, Razgado LF, Vergara P, Segovia JJC, neurobiology m. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington's disease delays the onset of the motor phenotype. 2011; 31(8): 1229-43. [DOI:10.1007/s10571-011-9725-y]
190. Valenza M, Cattaneo EJTin. Emerging roles for cholesterol in Huntington's disease. 2011; 34(9): 474-86. [DOI:10.1016/j.tins.2011.06.005]
191. Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, et al. Cholesterol defect is marked across multiple rodent models of Huntington's disease and is manifest in astrocytes. 2010; 30(32): 10844-50. [DOI:10.1523/JNEUROSCI.0917-10.2010]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ramazi S, arani F, safaei A, abbasi Z, heidari Z, Ghasemian nafchi H, et al . The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions. Shefaye Khatam. 2021; 9 (2) :119-139
URL: http://shefayekhatam.ir/article-1-2216-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (Spring 2021) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4414