[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 10, Issue 2 (Spring 2022) ::
Shefaye Khatam 2022, 10(2): 46-56 Back to browse issues page
The Effect of Aerobic Exercise and Octopamine on the Expression of Serotonergic, Adrenergic, and Dopaminergic Pathways in the Cerebellum of Deep-Frying Oil-Treated Rats
Tavoos Ziaie Bigdeli , Maghsoud Peeri * , Mohammad Ali Azarbayjani
Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran , m.peeri@iauctb.ac.ir
Abstract:   (1337 Views)
Introduction: Using deep frying oil (DFO) in preparing various foods. High temperature alter the constituents of DFO, which mav be harmful for different cells, paerticularly neural cells.  It seems that physical activity and phytochemical compounds can reduce the negative effects of consuming DFO. However, their definite effect is not known. The aim of this study was to determine the effect of aerobic exercise and octopamine on gene expression of dopamine, serotonin, norepinephrine, 5-HT, and dopamine, as well as the number of Purkinje cells and the percentage of apoptotic cells in the cerebellum of rats fed with DFO. Materials and Methods: Thirty male Wistar rats with a mean age of 20 weeks and weight of 300-350 g were divided into five groups: healthy control, DFO, DFO + exercise, DFO + octopamine, and DFO + exercise + octopamine. At the beginning of the first week, rats were fed with DFO. The rats received the intraperitoneal injection of octopamine for 4 weeks, 5 days per week.  The training was done for 4 weeks, 5 days a week, and 20 minutes per day at a speed of 26 m/minute aerobic exercises. After 4 weeks, chemical analyzes were performed by Real-time PCR to measure gene expression and Western blot to measure protein expression on samples fixed cerebellum. Results: The results showed that DFO uptake significantly decreased the expression of dopamine, serotonin, norepinephrine, 5-HT, dopamine, and cerebellar Purkinje cells and increased the percentage of apoptotic cells. Octopamine intake or exercise increased the expression of dopamine, serotonin, norepinephrine, 5-HT, dopamine, and the number of Purkinje cells and decreased the percentage of apoptotic cells. The co-application of  of octopamine and exercise had no significant effect on increasing the expression of dopamine, serotonin, norepinephrine, 5-HT, dopamine protein, and number of Purkinje cells, but significantly reduced the percentage of apoptotic cells. Conclusion: Consumption of high-fat food disrupts dopaminergic and serotonergic pathways. Aerobic exercise and octopamine protective effect against DFO toxic effects on cerebellum tissue.
Keywords: Exercise, Octopamine, Cerebellum
Full-Text [PDF 1493 kb]   (483 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Shen, Q., Zhang, J., Hou, Y.-x., Yu, J.-h. & Hu, J.-y. Quality control of the agricultural products supply chain based on "Internet+". Information Processing in Agriculture, 2018; 5, 394-400. [DOI:10.1016/j.inpa.2018.05.005]
2. Ganesan, K. and Xu, B. Deep frying cooking oils promote the high risk of metastases in the breast-A critical review. Food and Chemical Toxicology, 2020; 144, p.111648. [DOI:10.1016/j.fct.2020.111648]
3. Nayak, P. K., Dash, U., Rayaguru, K. & Krishnan, K. R. Physio‐chemical changes during repeated frying of cooked oil: A Review. Journal of Food Biochemistry, 2016; 40, 371-90. [DOI:10.1111/jfbc.12215]
4. Zarei, M., Uppin, V., Acharya, P. and Talahalli, R., Ginger and turmeric lipid-solubles attenuate heated oil-induced oxidative stress in the brain via the upregulation of NRF2 and improve cognitive function in rats. Metabolic Brain Disease, 2021; 36(2), pp.225-38. [DOI:10.1007/s11011-020-00642-y]
5. Partadiredja, G., Karima, N., Utami, K. P., Agustiningsih, D. & Sofro, Z. M. The effects of light and moderate intensity exercise on the femoral bone and cerebellum of D-galactose-exposed rats. Rejuvenation research, 2019; 22, 20-30. [DOI:10.1089/rej.2018.2050]
6. Diaz-Hung ML, Fraguela MG. Oxidative stress in neurological diseases: cause or effect?. Neurologia (English Edition). 2014; 8(29): 451-2. [DOI:10.1016/j.nrleng.2013.06.012]
7. Sadoughi SD, Khayatzadeh J. Effect of Curcumin on Hippocampal Levels of Brain-Derived Neurotrophic Factor and Serum Levels of Inflammatory Cytokines in Rat Model for Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2018 Jan 10; 6(1): 1-9. [DOI:10.29252/shefa.6.1.1]
8. Davie, J.T., Clark, B.A. and Häusser, M, The origin of the complex spike in cerebellar Purkinje cells. Journal of Neuroscience, 2008; 28(30), pp.7599-609. [DOI:10.1523/JNEUROSCI.0559-08.2008]
9. Williams D, Tijssen M, Van Bruggen G, Bosch A, Insola A, Lazzaro VD, Mazzone P, Oliviero A, Quartarone A, Speelman H, Brown P. Dopamine‐dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002 Jul 1; 125(7): 1558-69. [DOI:10.1093/brain/awf156]
10. De Deurwaerdère, P., Lagière, M., Bosc, M. et al. Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res, 2013; 230, 477-51 [DOI:10.1007/s00221-013-3508-2]
11. Yazdian MR, Khalaj A, Kalhor N. The Effect of Caloric Restriction and Treadmill Exercise on Reserpine-Induced Catalepsy in a Rat Model of Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2018 Oct 10; 6(4): 45-52 [DOI:10.29252/shefa.6.4.45]
12. Liano IS, Gerschenfeld HM. Beta‐adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. The Journal of Physiology. 1993 Aug 1; 468(1): 201-24. [DOI:10.1113/jphysiol.1993.sp019767]
13. Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G. Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. Progress in brain research. 2008 Jan 1;172; 423-63. [DOI:10.1016/S0079-6123(08)00921-7]
14. De Deurwaerdère, P., Lagière, M., Bosc, M. et al. Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res, 2013; 230, 477-511. [DOI:10.1007/s00221-013-3508-2]
15. Cheon, S.-H. The effect of a skilled reaching task on hippocampal plasticity after intracerebral hemorrhage in adult rats. Journal of physical therapy science, 2015; 27: 131-3. [DOI:10.1589/jpts.27.131]
16. Ahmadi R, Sohrabian L. The Effect of Ghrelin Agonist, Exercise, and Nicotine on Catalepsy in an Animal Model of Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2017 Jul 10; 5(3): 28-34. [DOI:10.18869/acadpub.shefa.5.3.28]
17. Cho, H.-S. et al. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats. Journal of exercise rehabilitation, 2016; 12: 293. [DOI:10.12965/jer.1632696.348]
18. Habibian M., Dabidi Roshan V., Moosavi Sj, Mahmoody Sa, Neuroprotective effect of aerobic training against Lead-induced oxidative stress in rat cerebellum, Journal of Gorgan University of Medical Sciences, 2013; 15(3): 39-45. (in persian).
19. Salehi OR, Hoseini A. The effects of endurance trainings on serum BDNF and insulin levels in streptozotocin-induced diabetic rats. Shefaye Khatam. 2017 Apr 10; 5(2): 52-61. [DOI:10.18869/acadpub.shefa.5.2.52]
20. Papenmeier, S., Uliczka, K., Roeder, T. & Wagner, C. Octopamine and its receptors are involved in the modulation of the immune response in Drosophila melanogaster. Pneumologie, 2019; 73: A33. [DOI:10.1055/s-0039-1678413]
21. Milusheva E, Baranyi M, Kittel A, Fekete A, Zelles T, Vizi ES, Sperlágh B. Modulation of dopaminergic neurotransmission in rat striatum upon in vitro and in vivo diclofenac treatment 1. Journal of neurochemistry. 2008 Apr; 105(2): 360-8. [DOI:10.1111/j.1471-4159.2007.05141.x]
22. Bour S, Visentin V, Prévot D, Carpéné C. Moderate weight-lowering effect of octopamine treatment in obese Zucker ratsEfecto moderado de un tratamiento prolongado con octopamina sobre el peso corporal en ratas obesas. Journal of physiology and biochemistry. 2003 Sep 1; 59(3): 175-82. [DOI:10.1007/BF03179913]
23. Wang Z, Liao T, Zhou Z, Wang Y, Diao Y, Strappe P, Prenzler P, Ayton J, Blanchard C. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch. Toxicology letters. 2016 Sep 6; 258: 168-74. [DOI:10.1016/j.toxlet.2016.06.2101]
24. Sun G, Qu S, Wang S, Shao Y, Sun J. Taurine attenuates acrylamide-induced axonal and myelinated damage through the Akt/GSK3β-dependent pathway. Int J Immunopathol Pharmacol. 2018 Jan-Dec; 32: 2058738418805322. [DOI:10.1177/2058738418805322]
25. de Oliveira AL, de Paula MN, Comar JF, Vilela VR, Peralta RM, Bracht A. Adrenergic metabolic and hemodynamic effects of octopamine in the liver. International journal of molecular sciences. 2013 Nov 5; 14(11): 21858-72. [DOI:10.3390/ijms141121858]
26. Awney, H. A. The effects of Bifidobacteria on the lipid profile and oxidative stress biomarkers of male rats fed thermally oxidized soybean oil. Biomarkers, 2011; 16: 445-52. [DOI:10.3109/1354750X.2011.590228]
27. Liano IS, Gerschenfeld HM. Beta‐adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. The Journal of Physiology. 1993 Aug 1; 468(1): 201-24. [DOI:10.1113/jphysiol.1993.sp019767]
28. Izadpanah S, Kordi M, Nouri R. The Effect of Six Weeks of Aerobic Training on Serotonin and Serotonin Receptors Levels in Hippocampus of Depression Female BALB/c Mice with Breast Cancer. Armaghane danesh. 2019; 24 (3): 435-445 (in persian).
29. Uysal N, Tugyan K, Kayatekin BM, Acikgoz O, Bagriyanik HA, Gonenc S, Ozdemir D, Aksu I, Topcu A, Semin I. The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett. 2005 Aug 5; 383(3): 241-5. [DOI:10.1016/j.neulet.2005.04.054]
30. Cui, L., Hofer, T., Rani, A., Leeuwenburgh, C. and Foster, T.C, Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiology of aging, 2009; 30(6), pp.903-9. [DOI:10.1016/j.neurobiolaging.2007.09.005]
31. Golmohammadi R, Behashti M. Effect of physical exercise on histological structure of purkinje cells of cerebellum in pentyleneterazole- induced epilieptic rat. JNKUMS. 2014; 6 (2) :395-40. [DOI:10.29252/jnkums.6.2.395]
32. Stohs, S., M. Shara, and S. Ray, p -Synephrine, ephedrine, p -octopamine and m synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytotherapy Research, 2020. 34. [DOI:10.1002/ptr.6649]
33. Diaz-Hung ML, Fraguela MG. Oxidative stress in neurological diseases: cause or effect?. Neurologia (English Edition). 2014; 8(29): 451-2. [DOI:10.1016/j.nrleng.2013.06.012]
34. Nikbin S, Tajik A, Allahyari P, Matin G, Hoseini Roote SS, Barati E, Ayazi M, Karimi L, Dayani Yazdi F, Javadinejad N, Azarbayjani MA. Aerobic exercise and eugenol supplementation ameliorated liver injury induced by chlorpyrifos via modulation acetylcholinesterase activation and antioxidant defense. Environmental Toxicology. 2020 Jul; 35(7):783-93. [DOI:10.1002/tox.22913]
35. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and biophysical research communications. 2004 Jan 23; 313(4): 856-62. [DOI:10.1016/j.bbrc.2003.11.177]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ziaie Bigdeli T, Peeri M, Azarbayjani M A. The Effect of Aerobic Exercise and Octopamine on the Expression of Serotonergic, Adrenergic, and Dopaminergic Pathways in the Cerebellum of Deep-Frying Oil-Treated Rats. Shefaye Khatam 2022; 10 (2) :46-56
URL: http://shefayekhatam.ir/article-1-2284-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (Spring 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4642