[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
:: دوره 10، شماره 3 - ( تابستان 1401 ) ::
دوره 10 شماره 3 صفحات 112-98 برگشت به فهرست نسخه ها
سلول‌های بنیادی القایی پرتوان انسانی رویکردی منحصر به فرد برای مدل‌سازی اسکیزوفرنی: هومئوستاز کلسیم
فرزانه نظری سرنجه، نرجس لطفی قادیکلایی، سعید محسنی پور، زهرا قاسم زاده*
بخش فیزیولوژی جانوری، دانشکده زیست‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران ، ghasemzadeh2010@gmail.com
چکیده:   (80 مشاهده)
مقدمه: اسکیزوفرنی (SZ) یک اختلال مغزی شایع، مزمن و تکوینی است که در نتیجه اختلال در ارتباطات نورونی ایجاد می‏‌شود. SZ باعث ناتوانی اجتماعی و شغلی، و طیف وسیعی از اختلالات روانی می‏‌شود که می‌‏تواند سبب رفتارهای نامناسب شود. بیش از 1 درصد جمعیت جهان تحت تاثیر این بیماری قرار می‏‌گیرند که با پریشانی تفکر، ادراک، احساسات، زبان و رفتار مشخص می‏‌شود. این بیماری با سایر مشکلات روانی مانند اضطراب، افسردگی یا اعتیاد همراه است. یک فرضیه در حال ظهور نقش اصلی اختلال در هومئوستاز کلسیم (+Ca2) را در پاتوفیزیولوژی SZ پیشنهاد می‏‌دهد. سیگنال‏‌های داخل سلولی متعددی توسط یون‏‌های+Ca2 راه‌‏اندازی می‏‌شوند که مسئول تنظیم تحریک‏‌پذیری عصبی، پردازش اطلاعات و فرایندهای شناختی هستند. اختلال در سیگنالینگ و هومئوستاز +Ca2 در نورون‏‌های گلوتاماترژیک، گابائرژیک و دوپامینرژیک مشخصه‏‌های اولیه بیماری SZ است. کشف سلول‏‌های بنیادی القایی پرتوان انسانی (iPSC) یک مدل بیماری سلولی جدید و امیدوارکننده برای SZ ارائه می‏‌دهد. با وجود این، نقش اصلی هومئوستاز +Ca2 و مکانیسم‏‌های آن در SZ با استفاده از مدل iPSC هنوز نیاز به بررسی دارد. در این مقاله، به بررسی درک فعلی هومئوستاز +Ca2 و مطالعات مبتنی بر مدل iPSCs و جهت‏‌های احتمالی آینده برای شناسایی فنوتیپ‏‌های سلولی قوی و معتبر برای کشف داروها و آزمایش آن‏‌ها می‏‌پردازیم. نتیجه‏‌گیری: مدل iPSC ابزار قدرتمندی برای روشن شدن مکانیسم‏ هومئوستاز +Ca2، درک پاتوفیزیولوژی بیماری SZ و توسعه دارو است.
واژه‌های کلیدی: هومئوستاز، سلول‌‌های بنیادی پرتوان القایی، اسکیزوفرنی
متن کامل [PDF 1594 kb]   (7 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: نوروفيزيولوژي
فهرست منابع
1. Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biological psychiatry. 2018; 83(9): 751-60. [DOI:10.1016/j.biopsych.2018.01.007]
2. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiological reviews. 1999; 79(3): 763-854. [DOI:10.1152/physrev.1999.79.3.763]
3. Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Stroke research and treatment. 2010. [DOI:10.4061/2010/316862]
4. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia bulletin. 2009; 35(3): 509-27. [DOI:10.1093/schbul/sbn176]
5. Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Frontiers in synaptic neuroscience. 2014; 6: 28. [DOI:10.3389/fnsyn.2014.00028]
6. Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophrenia research. 2017; 187: 17-25. [DOI:10.1016/j.schres.2017.01.056]
7. Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Molecular psychiatry. 2017; 22(9):1241-9. [DOI:10.1038/mp.2017.40]
8. Islam MS. Calcium signaling: from basic to bedside. Calcium Signaling. 2020;1-6. [DOI:10.1007/978-3-030-12457-1_1]
9. Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013; 7(1): 2-13. [DOI:10.4161/pri.21767]
10. Alves VS, Alves-Silva HS, Orts DJ, Ribeiro-Silva L, Arcisio-Miranda M, Oliveira FA. Calcium signaling in neurons and glial cells: Role of Cav1 channels. Neuroscience. 2019; 421: 95-111. [DOI:10.1016/j.neuroscience.2019.09.041]
11. HegedHus L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, et al. Molecular diversity of plasma membrane Ca 2+ transporting ATPases: Their function under normal and pathological conditions. Calcium Signaling. 2020; 93-129. [DOI:10.1007/978-3-030-12457-1_5]
12. Vallese F, Barazzuol L, Maso L, Brini M, Calì T. ER-mitochondria calcium transfer, organelle contacts and neurodegenerative diseases. Calcium Signaling. 2020; 719-46. [DOI:10.1007/978-3-030-12457-1_29]
13. Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: expression, interactions, and associated functions in health and disease states. International journal of molecular sciences. 2019; 20(13): 3348. [DOI:10.3390/ijms20133348]
14. De Stefani D, Rizzuto R, Pozzan T. Enjoy the trip: calcium in mitochondria back and forth. Annual review of biochemistry. 2016; 85: 161-92. [DOI:10.1146/annurev-biochem-060614-034216]
15. Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, et al. Pharmacological modulation of mitochondrial ion channels. British journal of pharmacology. 2019; 176(22): 4258-83. [DOI:10.1111/bph.14544]
16. Sterea AM, El Hiani Y. The role of mitochondrial calcium signaling in the pathophysiology of cancer cells. Calcium Signaling. 2020; 747-70. [DOI:10.1007/978-3-030-12457-1_30]
17. Stojkovic M, Lako M, Strachan T, Murdoch A. Derivation, growth and applications of human embryonic stem cells. Reproduction. 2004; 128(3): 259-67. [DOI:10.1530/rep.1.00243]
18. Isasi RM, Knoppers BM. Governing stem cell banks and registries: emerging issues. Stem Cell Research. 2009; 3(2-3): 96-105. [DOI:10.1016/j.scr.2009.05.003]
19. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-72. [DOI:10.1016/j.cell.2007.11.019]
20. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences. 2011; 108(34): 14234-9. [DOI:10.1073/pnas.1103509108]
21. Boissart C, Poulet A, Georges P, Darville H, Julita E, Delorme R, et al. Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Translational psychiatry. 2013; 3(8): e294. [DOI:10.1038/tp.2013.71]
22. Wang L, Wang L, Huang W, Su H, Xue Y, Su Z, et al. Generation of integration-free neural progenitor cells from cells in human urine. Nature methods. 2013; 10(1): 84-9. [DOI:10.1038/nmeth.2283]
23. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, et al. Reprogramming of peripheral blood cells to induced pluripotent stem cells. Cell stem cell. 2010; 7(1): 20. [DOI:10.1016/j.stem.2010.06.002]
24. Telpalo-Carpio SA, Aguilar-Yañez JM, Gonzalez-Garza MT, Cruz-Vega DE, Moreno-Cuevas JE. iPS cells generation: an overview of techniques and methods. Journal of stem cells & regenerative medicine. 2013; 9(1): 2. [DOI:10.46582/jsrm.0901002]
25. Sharma R. iPS cells-the triumphs and tribulations. Dentistry journal. 2016; 4(2): 19. [DOI:10.3390/dj4020019]
26. Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews Neurology. 2017; 13(5): 265-78. [DOI:10.1038/nrneurol.2017.45]
27. Räsänen N, Tiihonen J, Koskuvi M, Lehtonen Š, Koistinaho J. The iPSC perspective on schizophrenia. Trends in neurosciences. 2022; 45(1): 8-26. [DOI:10.1016/j.tins.2021.11.002]
28. Jacobs GR, Voineskos AN. Genetics and Neuroimaging in Schizophrenia. Neuroimaging in Schizophrenia. 2020; p. 319-42. [DOI:10.1007/978-3-030-35206-6_16]
29. Gaebel W, Zielasek J. Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry and clinical neurosciences. 2015; 69(11): 661-73. [DOI:10.1111/pcn.12322]
30. Antonovaa E, Sharmab T, Morris R, Kumari V. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophrenia Research. 2004; 70:117 - 145. [DOI:10.1016/j.schres.2003.12.002]
31. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience. 2017; 18(12): 727-40. [DOI:10.1038/nrn.2017.125]
32. Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatric genetics. 2020; 30(1): 1-9. [DOI:10.1097/YPG.0000000000000245]
33. Pickard B. Progress in defining the biological causes of schizophrenia. Expert reviews in molecular medicine. 2011; 13. [DOI:10.1017/S1462399411001955]
34. Kehrer C, Maziashvili N, Dugladze T, Gloveli T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Frontiers in molecular neuroscience. 2008; 1: 6. [DOI:10.3389/neuro.02.006.2008]
35. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Novel antischizophrenia treatments. 2012; 267-95. [DOI:10.1007/978-3-642-25758-2_10]
36. Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS. Dopamine receptor-interacting proteins: the Ca2+ connection in dopamine signaling. Trends in pharmacological sciences. 2003; 24(9): 486-92. [DOI:10.1016/S0165-6147(03)00232-3]
37. Lintunen J, Lähteenvuo M, Tiihonen J, Tanskanen A, Taipale H. Adenosine modulators and calcium channel blockers as add-on treatment for schizophrenia. NPJ schizophrenia. 2021; 7(1): 1-7. [DOI:10.1038/s41537-020-00135-y]
38. Kotlar AV, Mercer KB, Zwick ME, Mulle JG. New discoveries in schizophrenia genetics reveal neurobiological pathways: a review of recent findings. European journal of medical genetics. 2015; 58(12): 704-14. [DOI:10.1016/j.ejmg.2015.10.008]
39. Lidow MS. Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain research reviews. 2003; 43(1): 70-84. [DOI:10.1016/S0165-0173(03)00203-0]
40. Ramírez OA, Couve A. The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends in cell biology. 2011; 21(4): 219-27. [DOI:10.1016/j.tcb.2010.12.003]
41. Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology. 2012; 62(3): 1230-41. [DOI:10.1016/j.neuropharm.2010.12.027]
42. Dahoun T, Trossbach SV, Brandon NJ, Korth C, Howes OD. The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Translational psychiatry. 2017; 7(1): e1015. [DOI:10.1038/tp.2016.282]
43. Lisek M, Boczek T, Zylinska L. Calcium as a Trojan horse in mental diseases-The role of PMCA and PMCA-interacting proteins in bipolar disorder and schizophrenia. Neuroscience letters. 2018; 663: 48-54. [DOI:10.1016/j.neulet.2017.08.005]
44. Belinsky GS, Rich MT, Sirois CL, Short SM, Pedrosa E, Lachman HM, et al. Patch-clamp recordings and calcium imaging followed by single-cell PCR reveal the developmental profile of 13 genes in iPSC-derived human neurons. Stem cell research. 2014; 12(1): 101-18. [DOI:10.1016/j.scr.2013.09.014]
45. Park SJ, Jeong J, Park Y-U, Park K-S, Lee H, Lee N, et al. Disrupted-in-schizophrenia-1 (DISC1) regulates endoplasmic reticulum calcium dynamics. Scientific reports. 2015; 5(1): 1-11. [DOI:10.1038/srep08694]
46. Park SJ, Lee SB, Suh Y, Kim S-J, Lee N, Hong J-H, et al. DISC1 modulates neuronal stress responses by gate-keeping ER-mitochondria Ca2+ transfer through the MAM. Cell reports. 2017; 21(10): 2748-59. [DOI:10.1016/j.celrep.2017.11.043]
47. Suh BK, Lee S-A, Park C, Suh Y, Kim SJ, Woo Y, et al. Schizophrenia-associated dysbindin modulates axonal mitochondrial movement in cooperation with p150 glued. Molecular brain. 2021; 14(1): 1-14. [DOI:10.1186/s13041-020-00720-3]
48. Mouri A, Noda Y, Noda A, Nakamura T, Tokura T, Yura Y, et al. Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine. Molecular Pharmacology. 2007; 71(6): 1598-609. [DOI:10.1124/mol.106.032961]
49. Kim P, Scott MR, Meador-Woodruff JH. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Molecular psychiatry. 2021; 26(4): 1321-31. [DOI:10.1038/s41380-019-0537-7]
50. Vidal-Domènech F, Riquelme G, Pinacho R, Rodriguez-Mias R, Vera A, Monje A, et al. Calcium-binding proteins are altered in the cerebellum in schizophrenia. PloS one. 2020; 15(7): e0230400. [DOI:10.1371/journal.pone.0230400]
51. Kim P, Scott MR, Meador-Woodruff JH. Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia. Schizophrenia research. 2018; 197: 484-91. [DOI:10.1016/j.schres.2018.02.010]
52. Rollins BL, Morgan L, Hjelm BE, Sequeira A, Schatzberg AF, Barchas JD, et al. Mitochondrial complex I deficiency in schizophrenia and bipolar disorder and medication influence. Molecular neuropsychiatry. 2017; 3(3): 157--69. [DOI:10.1159/000484348]
53. Chadha R, Haroutunian V, Meador-Woodruff J. SU100. Proteins of the Calcium Transport Machinery at the Endoplasmic Reticulum-Mitochondria Interface are Dysregulated in Schizophrenia. Schizophrenia Bulletin. 2017; 43(Suppl 1): S197. [DOI:10.1093/schbul/sbx024.096]
54. McMeekin LJ, Lucas EK, Meador-Woodruff JH, McCullumsmith RE, Hendrickson RC, Gamble KL, et al. Cortical PGC-1α-dependent transcripts are reduced in postmortem tissue from patients with schizophrenia. Schizophrenia bulletin. 2016; 42(4): 1009-17. [DOI:10.1093/schbul/sbv184]
55. Luo XJ, Li M, Huang L, Steinberg S, Mattheisen M, Liang G, et al. Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Molecular psychiatry. 2014; 19(7): 774-83. [DOI:10.1038/mp.2013.103]
56. Solis-Chagoyan H, Calixto E, Figueroa A, Montano LM, Berlanga C, Rodriguez-Verdugo MS, et al. Microtubule organization and L-type voltage-activated calcium current in olfactory neuronal cells obtained from patients with schizophrenia and bipolar disorder. Schizophrenia research. 2013; 143(2-3): 384-9. [DOI:10.1016/j.schres.2012.11.035]
57. Rosenfeld M, Brenner-Lavie H, Ari SG-B, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biological psychiatry. 2011; 69(10): 980-8. [DOI:10.1016/j.biopsych.2011.01.010]
58. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, et al. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. European archives of psychiatry and clinical neuroscience. 2009; 259(3): 151-63. [DOI:10.1007/s00406-008-0847-2]
59. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PloS one. 2008; 3(11): e3625. [DOI:10.1371/journal.pone.0003625]
60. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang J-J, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular psychiatry. 2004; 9(7): 684-97. [DOI:10.1038/sj.mp.4001511]
61. Bai J, He F, Novikova SI, Undie AS, Dracheva S, Haroutunian V, et al. Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biological psychiatry. 2004; 56(6): 427-40. [DOI:10.1016/j.biopsych.2004.06.022]
62. Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proceedings of the National Academy of Sciences. 2003; 100(1): 313-7. [DOI:10.1073/pnas.232693499]
63. Maurer I, Zierz S, Möller H-J. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophrenia research. 2001; 48(1): 125-36. [DOI:10.1016/S0920-9964(00)00075-X]
64. Zuccoli GS, Nascimento JM, Codo AC, Moraes-Vieira PM, Rehen SS, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. bioRxiv. 2020. [DOI:10.1101/2020.09.04.282046]
65. Xu J, Hartley BJ, Kurup P, Phillips A, Topol A, Xu M, et al. Inhibition of STEP 61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Molecular psychiatry. 2018; 23(2): 27-81. [DOI:10.1038/mp.2016.163]
66. Flaherty E, Deranieh RM, Artimovich E, Lee IS, Siegel AJ, Levy DL, et al. Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ schizophrenia. 2017; 3(1): 1-4. [DOI:10.1038/s41537-017-0033-5]
67. Toyoshima M, Akamatsu W, Okada Y, Ohnishi T, Balan S, Hisano Y, et al. Analysis of induced pluripotent stem cells carrying 22q11. 2 deletion. Translational psychiatry. 2016; 6(11): e934-e934. [DOI:10.1038/tp.2016.206]
68. D'Aiuto L, Prasad KM, Upton CH, Viggiano L, Milosevic J, Raimondi G, et al. Persistent infection by HSV-1 is associated with changes in functional architecture of iPSC-derived neurons and brain activation patterns underlying working memory performance. Schizophrenia bulletin. 2015; 41(1): 123-32. [DOI:10.1093/schbul/sbu032]
69. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014; 515(7527): 414-8. [DOI:10.1038/nature13716]
70. Das DK, Tapias V, Chowdari KV, Francis L, Zhi Y, Ghosh A, et al. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11. 2 (BP1-BP2) deletions. Molecular neuropsychiatry. 2015; 1(2): 116-23. [DOI:10.1159/000430916]
71. da Silveira Paulsen B, de Moraes Maciel R, Galina A, Da Silveira MS, Souza C dos S, Drummond H, et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell transplantation. 2012; 2(7): 1547-59. [DOI:10.3727/096368911X600957]
72. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011; 473(7346): 221-5. [DOI:10.1038/nature09915]
73. Ni P, Noh H, Park G-H, Shao Z, Guan Y, Park JM, et al. iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Molecular psychiatry. 2020; 25(11): 2873-88. [DOI:10.1038/s41380-019-0423-3]
74. Grunwald L-M, Stock R, Haag K, Buckenmaier S, Eberle M-C, Wildgruber D, et al. Comparative characterization of human induced pluripotent stem cells (hiPSC) derived from patients with schizophrenia and autism. Translational psychiatry. 2019; 9(1): 1-11. [DOI:10.1038/s41398-019-0517-3]
75. Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular models in schizophrenia research. International Journal of Molecular Sciences. 2021; 22(16), 851. [DOI:10.3390/ijms22168518]
76. Giegling I, Genius J, Benninghoff J, Rujescu D. Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010; 34 (8): 1375-80. [DOI:10.1016/j.pnpbp.2010.06.018]
77. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular psychiatry. 2015; 20(3): 361-8. [DOI:10.1038/mp.2014.22]
78. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of psychopharmacology. 2015; 29(2): 97-115. [DOI:10.1177/0269881114563634]
79. Zink M, Correll CU. Glutamatergic agents for schizophrenia: current evidence and perspectives. Expert review of clinical pharmacology. 2015; 8(3): 335-52. [DOI:10.1586/17512433.2015.1040393]
80. Haaf M, Leicht G, Curic S, Mulert C. Glutamatergic deficits in schizophrenia-Biomarkers and pharmacological interventions within the ketamine model. Current pharmaceutical biotechnology. 2018; 19(4): 293-307. [DOI:10.2174/1389201019666180620112528]
81. Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. International journal of molecular sciences. 2017; 18(8): 1689. [DOI:10.3390/ijms18081689]
82. Snyder MA, Gao W-J. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophrenia research. 2020; 217: 60-70. [DOI:10.1016/j.schres.2019.03.010]
83. Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. British journal of pharmacology. 2017; 174(19): 3136-60. [DOI:10.1111/bph.13919]
84. Omranifard V, Rajabi F, Mohammadian-Sichani M, Maracy MR. The effect of add-on memantine on positive, negative and depressive symptoms of schizophrenia: a doubleblind, randomized, controlled trial. Actas Esp Psiquiatr. 2017; 45(3): 108-15.
85. Goff DC, Wine L. Glutamate in schizophrenia: clinical and research implications. Schizophrenia Research. 1997; 27(2-3): 157-68. [DOI:10.1016/S0920-9964(97)00079-0]
86. Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia. Ann NY Acad Sci. 2003; 1003: 138-58. [DOI:10.1196/annals.1300.063]
87. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002; 295(5554): 491-5. [DOI:10.1126/science.1065983]
88. Gao W-J, Snyder MA. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Frontiers in cellular neuroscience. 2013; 7: 31. [DOI:10.3389/fncel.2013.00031]
89. Swanton T. The dopamine, glutamate, and GABA hypotheses of schizophrenia: Glutamate may be the key. ANU Undergraduate Research Journal. 2020; 10(1): 88-96.
90. Paine TA, Slipp LE, Carlezon WA. Schizophrenia-like attentional deficits following blockade of prefrontal cortex GABAA receptors. Neuropsychopharmacology. 2011 Jul; 36(8): 1703-13. [DOI:10.1038/npp.2011.51]
91. Berretta S, Gisabella B, Benes FM. A rodent model of schizophrenia derived from postmortem studies. Behavioural brain research. 2009; 204(2): 363-8. [DOI:10.1016/j.bbr.2009.06.019]
92. Koshiyama D, Kirihara K, Tada M, Nagai T, Fujioka M, Ichikawa E, et al. Electrophysiological evidence for abnormal glutamate-GABA association following psychosis onset. Translational psychiatry. 2018; 8(1): 1-10. [DOI:10.1038/s41398-018-0261-0]
93. Kuijlaars J, Oyelami T, Diels A, Rohrbacher J, Versweyveld S, Meneghello G, et al. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Scientific reports. 2016; 6(1): 1-14. [DOI:10.1038/srep36529]
94. Zhan L, Kerr JR, Lafuente M-J, Maclean A, Chibalina MV, Liu B, et al. Altered expression and coregulation of dopamine signalling genes in schizophrenia and bipolar disorder. Neuropathology and applied neurobiology. 2011; 37(2): 206-19. [DOI:10.1111/j.1365-2990.2010.01128.x]
95. Glausier JR, Lewis DA. GABA and schizophrenia: Where we stand and where we need to go. Schizophrenia research. 2017; 181: 2. [DOI:10.1016/j.schres.2017.01.050]
96. Rowland LM, Krause BW, Wijtenburg SA, McMahon RP, Chiappelli J, Nugent KL, et al. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Molecular psychiatry. 2016; 21(2): 198-204. [DOI:10.1038/mp.2015.34]
97. Bojarski L, Debowska K, Wojda U. In vitro findings of alterations in intracellular calcium homeostasis in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010; 34(8): 1367-74. [DOI:10.1016/j.pnpbp.2010.08.020]
98. Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H. Assessing phototoxicity in live fluorescence imaging. Nature methods. 2017; 14(7): 657-61. [DOI:10.1038/nmeth.4344]
99. Wahle P, Gasterstädt I, Jack A, Stahlhut T, Rennau L-M, Gonda S. Genetically encoded calcium indicators can impair dendrite growth of cortical neurons. Frontiers in cellular neuroscience. 2020; 14:307. [DOI:10.3389/fncel.2020.570596]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nazari Serenjeh F, Lotfi-Ghadikolaii N, Mohsenipour S, Ghasemzadeh Z. Human-Induced Pluripotent Stem Cells are a Unique Approach for Modeling Schizophrenia: Calcium Homeostasis. Shefaye Khatam. 2022; 10 (3) :98-112
URL: http://shefayekhatam.ir/article-1-2296-fa.html

نظری سرنجه فرزانه، لطفی قادیکلایی نرجس، محسنی پور سعید، قاسم زاده زهرا. سلول‌های بنیادی القایی پرتوان انسانی رویکردی منحصر به فرد برای مدل‌سازی اسکیزوفرنی: هومئوستاز کلسیم. مجله علوم اعصاب شفای خاتم. 1401; 10 (3) :112-98

URL: http://shefayekhatam.ir/article-1-2296-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 3 - ( تابستان 1401 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4463