1. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. The Lancet Neurology. 2011; 10(9): 819-28. [ DOI:10.1016/S1474-4422(11)70072-2] 2. MODARRES MSM, Ghaemi A, GHADIRI T, MOHAMMAD SS. Application of patient-specific induced Pluripotent Stem cells produced by somatic cells reprogramming for treatment of neurodegenerative diseases. 2013. 3. Rajabi S, Noori S, Zal F, Jahanbazi Jahan-Abad A. Oxidative stress and its different roles in neurodegenerative diseases. Neurosci J Shefaye Khatam. 2017; 5(1): 73-86. [ DOI:10.18869/acadpub.shefa.5.1.73] 4. Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. The Lancet Neurology. 2007; 6(12): 1106-14. [ DOI:10.1016/S1474-4422(07)70291-0] 5. Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain sciences. 2020; 10(2): 84. [ DOI:10.3390/brainsci10020084] 6. Bargi R, Salmani H, Asgharzadeh Yazdi F, Hosseini M. Inflammation and the brain disorders: a review. The Neuroscience Journal of Shefaye Khatam. 2017; 5(3): 68-82. [ DOI:10.18869/acadpub.shefa.5.3.68] 7. Rezaee Z, Marandi SM, Alaei H, Esfarjani F. Molecular Mechanisms of Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2019; 8(1): 120-8. [ DOI:10.29252/shefa.8.1.120] 8. Rezaee Z. The Effect of Exercise on Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 189-99. [ DOI:10.52547/shefa.9.1.189] 9. Hwang O. Role of oxidative stress in Parkinson's disease. Experimental neurobiology. 2013; 22(1): 11. [ DOI:10.5607/en.2013.22.1.11] 10. Bender DA. Nutritional biochemistry of the vitamins: Cambridge university press; 2003. [ DOI:10.1017/CBO9780511615191] 11. Darnton-Hill I. Public health aspects in the prevention and control of vitamin deficiencies. Current Developments in Nutrition. 2019; 3(9): nzz075. [ DOI:10.1093/cdn/nzz075] 12. Shenkin A. Micronutrients in health and disease. Postgraduate medical journal. 2006; 82(971): 559-67. [ DOI:10.1136/pgmj.2006.047670] 13. Shao A, Drewnowski A, Willcox D, Krämer L, Lausted C, Eggersdorfer M, et al. Optimal nutrition and the ever-changing dietary landscape: a conference report. European journal of nutrition. 2017; 56(1): 1-21. [ DOI:10.1007/s00394-017-1460-9] 14. Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins: Vitamins E and C, Beta‐Carotene, and other carotenoids a. Annals of the New York Academy of Sciences. 1992; 669(1): 7-20. [ DOI:10.1111/j.1749-6632.1992.tb17085.x] 15. Ravisankar P, Reddy AA, Nagalakshmi B, Koushik OS, Kumar BV, Anvith PS. The comprehensive review on fat soluble vitamins. IOSR Journal of Pharmacy. 2015; 5(11): 12-28. 16. Huskisson E, Maggini S, Ruf M. The influence of micronutrients on cognitive function and performance. Journal of international medical research. 2007; 35(1): 1-19. [ DOI:10.1177/147323000703500101] 17. Malinin NL, West XZ, Byzova TV. Oxidation as "the stress of life". Aging (Albany NY). 2011; 3(9): 906. [ DOI:10.18632/aging.100385] 18. Albahrani AA, Greaves RF. Fat-soluble vitamins: clinical indications and current challenges for chromatographic measurement. The Clinical Biochemist Reviews. 2016; 37(1): 27. 19. Goncalves A, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot M-J, et al. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption. Food Chemistry. 2015; 172: 155-60. [ DOI:10.1016/j.foodchem.2014.09.021] 20. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. Journal of clinical medicine. 2018; 7(9): 258. [ DOI:10.3390/jcm7090258] 21. Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L. Vitamin D3: a helpful immuno‐modulator. Immunology. 2011; 134(2): 123-39. [ DOI:10.1111/j.1365-2567.2011.03482.x] 22. Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018; 10(11): 1614. [ DOI:10.3390/nu10111614] 23. Gröber U, Reichrath J, Holick M, Kisters K. Vitamin K: an old vitamin in a new perspective. Dermato-endocrinology. 2014; 6(1): e968490. [ DOI:10.4161/19381972.2014.968490] 24. Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The role of vitamins in neurodegenerative disease: An update. Biomedicines. 2021; 9(10): 1284. [ DOI:10.3390/biomedicines9101284] 25. Lykstad J, Sharma S. Biochemistry, Water Soluble Vitamins. 2019. 26. Zhao X, Zhang M, Li C, Jiang X, Su Y, Zhang Y. Benefits of Vitamins in the Treatment of Parkinson's Disease. Oxidative medicine and cellular longevity. 2019; 2019. [ DOI:10.1155/2019/9426867] 27. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy-a review. Nutrients. 2016; 8(2): 68. [ DOI:10.3390/nu8020068] 28. Fattal-Valevski A. Thiamine (vitamin B1). Journal of Evidence-Based Complementary & Alternative Medicine. 2011; 16(1): 12-20. [ DOI:10.1177/1533210110392941] 29. Nematgorgani S, Gholi Z, Jahromi SR, Togha M, Karimzadeh F. The effect of vitamins b on improving the symptoms of migraine: An overview. The Neuroscience Journal of Shefaye Khatam. 2020; 8(2): 119-29. [ DOI:10.29252/shefa.8.2.119] 30. Buehler BA. Vitamin B2: riboflavin. Journal of Evidence-Based Complementary & Alternative Medicine. 2011; 16(2): 88-90. [ DOI:10.1177/1533210110392943] 31. Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. International journal of molecular sciences. 2019; 20(4): 974. [ DOI:10.3390/ijms20040974] 32. Miller JW, Rucker RB. Pantothenic acid. Present knowledge in nutrition: Elsevier; 2020. p. 273-87. [ DOI:10.1016/B978-0-323-66162-1.00016-0] 33. Mikkelsen K, Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the immune system. Nutrition and immunity: Springer; 2019. p. 115-25. [ DOI:10.1007/978-3-030-16073-9_7] 34. Anastassakis K. Vit B7 (Vit H, Biotin, Coenzyme R). Androgenetic Alopecia From A to Z: Springer; 2022. p. 321-7. [ DOI:10.1007/978-3-031-08057-9_33] 35. Naderi N, House JD. Recent developments in folate nutrition. Advances in food and nutrition research. 2018; 83: 195-213. [ DOI:10.1016/bs.afnr.2017.12.006] 36. Kumar N. Neurologic aspects of cobalamin (B12) deficiency. Handbook of clinical neurology. 2014; 120: 915-26. [ DOI:10.1016/B978-0-7020-4087-0.00060-7] 37. Abdullah M, Jamil RT, Attia FN. Vitamin C (ascorbic acid). StatPearls [Internet]: StatPearls Publishing; 2022. 38. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor perspectives in medicine. 2011; 1(1): a006189. [ DOI:10.1101/cshperspect.a006189] 39. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Molecular neurodegeneration. 2019; 14(1): 1-18. [ DOI:10.1186/s13024-019-0333-5] 40. Lacosta A-M, Insua D, Badi H, Pesini P, Sarasa M. Neurofibrillary tangles of Aβ x-40 in Alzheimer's disease brains. Journal of Alzheimer's Disease. 2017; 58(3): 661-7. [ DOI:10.3233/JAD-170163] 41. Khaledi S, Ahmadi S. Amyloid Beta and Tau: from Physiology to Pathology in Alzheimer's disease. Shefaye Khatam. 2016; 4(4): 67-88. [ DOI:10.18869/acadpub.shefa.4.4.67] 42. da Silva SL, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimer's & Dementia. 2014; 10(4): 485-502. [ DOI:10.1016/j.jalz.2013.05.1771] 43. Gibson GE, Peterson C. Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem. 1981; 37(4): 978-84. [ DOI:10.1111/j.1471-4159.1981.tb04484.x] 44. Mann P, Quastel J. Vitamin B1 and acetylcholine formation in isolated brain. Nature. 1940; 145(3683): 856-7. [ DOI:10.1038/145856a0] 45. Wu F, Xu K, Liu L, Zhang K, Xia L, Zhang M, et al. Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Frontiers in Pharmacology. 2019: 406. [ DOI:10.3389/fphar.2019.00406] 46. Burns A, Bernabei R, Bullock R, Jentoft AJC, Frölich L, Hock C, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer's disease (the SERAD study): a randomised, placebo-controlled, double-blind trial. The Lancet Neurology. 2009; 8(1): 39-47. [ DOI:10.1016/S1474-4422(08)70261-8] 47. Kook S, Lee K, Kim Y, Cha M, Kang S, Baik S, et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell death & disease. 2014; 5(2): e1083-e. [ DOI:10.1038/cddis.2014.26] 48. Paleologos M, Cumming RG, Lazarus R. Cohort study of vitamin C intake and cognitive impairment. Am J Epidemiol. 1998; 148(1): 45-50. [ DOI:10.1093/oxfordjournals.aje.a009559] 49. Dursun E, Alaylıoğlu M, Bilgiç B, Hanağası H, Lohmann E, Atasoy IL, et al. Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer's disease patients. Neurological Sciences. 2016; 37(10): 1633-43. [ DOI:10.1007/s10072-016-2647-1] 50. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer's disease. Journal of Alzheimer's Disease. 2017; 57(4): 1105-21. [ DOI:10.3233/JAD-161088] 51. Tan BL, Norhaizan ME, Liew W-P-P, Sulaiman Rahman H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology. 2018; 9: 1162. [ DOI:10.3389/fphar.2018.01162] 52. Alipour F, Haghighi MB, Mojdeh HP. The Role of Stem Cell Therapy in Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2016; 4(2): 87-97. [ DOI:10.18869/acadpub.shefa.4.2.87] 53. Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & redox signaling. 2011; 14(10): 2013-54. [ DOI:10.1089/ars.2010.3208] 54. de Wilde MC, Vellas B, Girault E, Yavuz AC, Sijben JW. Lower brain and blood nutrient status in Alzheimer's disease: Results from meta-analyses. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2017; 3(3): 416-31. [ DOI:10.1016/j.trci.2017.06.002] 55. Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Archives of neurology. 2004; 61(1): 82-8. [ DOI:10.1001/archneur.61.1.82] 56. Yuan C, Fondell E, Ascherio A, Okereke OI, Grodstein F, Hofman A, et al. Long-term intake of dietary carotenoids is positively associated with late-life subjective cognitive function in a prospective study in US women. The Journal of nutrition. 2020; 150(7): 1871-9. [ DOI:10.1093/jn/nxaa087] 57. Endres K. Retinoic Acid and the Gut Microbiota in Alzheimer's Disease: Fighting Back-to-Back? Current Alzheimer Research. 2019; 16(5): 405-17. [ DOI:10.2174/1567205016666190321163705] 58. Ishii M, Kamel H, Iadecola C. Retinol binding protein 4 levels are not altered in preclinical Alzheimer's disease and not associated with cognitive decline or incident dementia. Journal of Alzheimer's Disease. 2019; 67(1): 257-63. [ DOI:10.3233/JAD-180682] 59. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and retinoic acid in cognition and cognitive disease. Annual review of nutrition. 2020; 40: 247-72. [ DOI:10.1146/annurev-nutr-122319-034227] 60. Sommer A, West KP. Vitamin A deficiency: health, survival, and vision: Oxford University Press, USA; 1996. [ DOI:10.1093/oso/9780195088243.001.0001] 61. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nature Reviews Neuroscience. 2007; 8(10): 755-65. [ DOI:10.1038/nrn2212] 62. Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain. European Journal of Neuroscience. 2004; 20(4): 896-902. [ DOI:10.1111/j.1460-9568.2004.03563.x] 63. Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, et al. Marginal vitamin A deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathologica. 2017; 133(6): 967-82. [ DOI:10.1007/s00401-017-1669-y] 64. Organization WH. Global prevalence of vitamin A deficiency in populations at risk 1995-2005: WHO global database on vitamin A deficiency. 2009. 65. Jama JW, Launer LJ, Witteman J, Den Breeijen J, Breteler M, Grobbee D, et al. Dietary antioxidants and cognitive function in a population-based sample of older persons: the Rotterdam Study. American journal of epidemiology. 1996; 144(3): 275-80. [ DOI:10.1093/oxfordjournals.aje.a008922] 66. Reinhardt S, OW Grimm M, Stahlmann C, Hartmann T, Shudo K, Tomita T, et al. Rescue of hypovitaminosis a induces non-amyloidogenic amyloid precursor protein (APP) processing. Current Alzheimer Research. 2016; 13(11): 1277-89. [ DOI:10.2174/1567205013666160603002105] 67. Rao A, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutritional neuroscience. 2002; 5(5): 291-309. [ DOI:10.1080/1028415021000033767] 68. Dauncey MJ. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients. 2013; 5(3): 887-914. [ DOI:10.3390/nu5030887] 69. Bottiglieri T. Homocysteine and folate metabolism in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2005; 29(7): 1103-12. [ DOI:10.1016/j.pnpbp.2005.06.021] 70. Refsum H, Ueland PM. Clinical significance of pharmacological modulation of homocysteine metabolism. Trends in Pharmacological Sciences. 1990; 11(10): 411-6. [ DOI:10.1016/0165-6147(90)90148-2] 71. Smith AD. The worldwide challenge of the dementias: a role for B vitamins and homocysteine? Food and nutrition bulletin. 2008; 29(2_suppl1): S143-S72. [ DOI:10.1177/15648265080292S119] 72. Douaud G, Refsum H, de Jager CA, Jacoby R, E. Nichols T, Smith SM, et al. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences. 2013; 110(23): 9523-8. [ DOI:10.1073/pnas.1301816110] 73. Zhang D-M, Ye J-X, Mu J-S, Cui X-P. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases: a systematic review and meta-analysis. Journal of geriatric psychiatry and neurology. 2017; 30(1): 50-9. [ DOI:10.1177/0891988716673466] 74. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. The Lancet. 2007; 369(9557): 208-16. [ DOI:10.1016/S0140-6736(07)60109-3] 75. Ford AH, Almeida OP. Effect of vitamin B supplementation on cognitive function in the elderly: a systematic review and meta-analysis. Drugs & aging. 2019; 36(5): 419-34. [ DOI:10.1007/s40266-019-00649-w] 76. Ford AH, Almeida OP. Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. Journal of Alzheimer's Disease. 2012; 29(1): 133-49. [ DOI:10.3233/JAD-2012-111739] 77. Lu'o'ng Kvq, Nguyễn LTH. Role of thiamine in Alzheimer's disease. American Journal of Alzheimer's Disease & Other Dementias®. 2011; 26(8): 588-98. [ DOI:10.1177/1533317511432736] 78. Meng H, Li Y, Zhang W, Zhao Y, Niu X, Guo J. The relationship between cognitive impairment and homocysteine in a B12 and folate deficient population in China: A cross-sectional study. Medicine. 2019; 98(47). [ DOI:10.1097/MD.0000000000017970] 79. Ulusu NN, Yilmaz G, Erbayraktar Z, Evlice AT, Aras S, Yener G, et al. A Turkish 3-center study evaluation of serum folic acid and vitamin B12 levels in Alzheimer disease. Turkish journal of medical sciences. 2015; 45(5): 1159-66. [ DOI:10.3906/sag-1406-136] 80. Rafiee S, Asadollahi K, Riazi G, Ahmadian S, Saboury AA. Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau. ACS chemical neuroscience. 2017; 8(12): 2676-82. [ DOI:10.1021/acschemneuro.7b00230] 81. Lanyau-Domínguez Y, Macías-Matos C, Llibre-Rodríguez JdJ, Pita-Rodríguez GM, Suárez-Medina R, Quintero-Alejo ME, et al. Levels of vitamins and homocysteine in older adults with Alzheimer disease or mild cognitive impairment in cuba. MEDICC review. 2021; 22: 40-7. [ DOI:10.37757/MR2020.V22.N4.14] 82. Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, et al. Folic acid supplementation mitigates Alzheimer's disease by reducing inflammation: a randomized controlled trial. Mediators of inflammation. 2016; 2016. [ DOI:10.1155/2016/5912146] 83. Banerjee A, Khemka VK, Ganguly A, Roy D, Ganguly U, Chakrabarti S. Vitamin D and Alzheimer's disease: neurocognition to therapeutics. International Journal of Alzheimer's Disease. 2015; 2015. [ DOI:10.1155/2015/192747] 84. Holick M. Vitamin D and brain health: the need for vitamin D supplementation and sensible sun exposure. Wiley Online Library; 2015. p. 90-3. [ DOI:10.1111/joim.12308] 85. Diesel B, Radermacher J, Bureik M, Bernhardt R, Seifert M, Reichrath Jr, et al. Vitamin D3 metabolism in human glioblastoma multiforme: functionality of CYP27B1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clinical Cancer Research. 2005; 11(15): 5370-80. [ DOI:10.1158/1078-0432.CCR-04-1968] 86. Neveu I, Naveilhan P, Menaa C, Wion D, Brachet P, Garabedian M. Synthesis of 1, 25‐dihydroxyvitamin D3 by rat brain macrophages in vitro. Journal of neuroscience research. 1994; 38(2): 214-20. [ DOI:10.1002/jnr.490380212] 87. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1, 25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neuroscience letters. 2003; 343(2): 139-43. [ DOI:10.1016/S0304-3940(03)00303-3] 88. Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging and disease. 2015; 6(5): 331. [ DOI:10.14336/AD.2015.0825] 89. Calissano P, Matrone C, Amadoro G. Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease. Developmental neurobiology. 2010; 70(5): 372-83. [ DOI:10.1002/dneu.20759] 90. Khaledi S, Ahmadi S. Cellular and molecular mechanisms of vitamin D deficiency in aging and Alzheimer's disease. The Neuroscience Journal of Shefaye Khatam. 2020; 8(3): 97-110. [ DOI:10.29252/shefa.8.3.97] 91. La Fata G, Weber P, Mohajeri MH. Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease. Nutrients. 2014; 6(12): 5453-72. [ DOI:10.3390/nu6125453] 92. Browne D, McGuinness B, Woodside JV, McKay GJ. Vitamin E and Alzheimer's disease: what do we know so far? Clinical interventions in aging. 2019; 14: 1303. [ DOI:10.2147/CIA.S186760] 93. Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of Alzheimer's disease: Evidence from animal models. International Journal of Molecular Sciences. 2017; 18(12): 2504. [ DOI:10.3390/ijms18122504] 94. Bhatti AB, Usman M, Ali F, Satti SA. Vitamin supplementation as an adjuvant treatment for Alzheimer's disease. Journal of clinical and diagnostic research: JCDR. 2016; 10(8): OE07. [ DOI:10.7860/JCDR/2016/20273.8261] 95. Barichella M, Garrì F, Caronni S, Bolliri C, Zocchi L, Macchione MC, et al. Vitamin D Status and Parkinson's Disease. Brain Sciences. 2022; 12(6): 790. [ DOI:10.3390/brainsci12060790] 96. Vazifehkhah S, Karimzadeh F. Parkinson Disease: from Pathophysiology to the Animal Models. The Neuroscience Journal of Shefaye Khatam. 2016; 4(3): 91-102. [ DOI:10.18869/acadpub.shefa.4.3.91] 97. Ahmadi M, Sharifi MS. Treatments of Parkinson's disease, Epilepsy and obsessive compulsive disorder with deep brain stimulation. Shefaye Khatam. 2014; 2(1): 95-100. [ DOI:10.18869/acadpub.shefa.2.1.95] 98. Zhang S, Hernan M, Chen H, Spiegelman D, Willett W, Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002; 59(8): 1161-9. [ DOI:10.1212/01.WNL.0000028688.75881.12] 99. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. Journal of Parkinson's disease. 2013; 3(4): 461-91. [ DOI:10.3233/JPD-130230] 100. Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects: thematic review series: fat-soluble vitamins: vitamin A. Journal of lipid research. 2013; 54(7): 1761-75. [ DOI:10.1194/jlr.R030833] 101. Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Sciences. 2015; 72(8): 1559-76. [ DOI:10.1007/s00018-014-1815-9] 102. Moretti R, Caruso P. The controversial role of homocysteine in neurology: from labs to clinical practice. International journal of molecular sciences. 2019; 20(1): 231. [ DOI:10.3390/ijms20010231] 103. Saadat P, Ahmadi Ahangar A, Samaei SE, Firozjaie A, Abbaspour F, Khafri S, et al. Serum homocysteine level in parkinson's disease and its association with duration, cardinal manifestation, and severity of disease. Parkinson's Disease. 2018; 2018. [ DOI:10.1155/2018/5813084] 104. Rozycka A, P Jagodzinski P, Kozubski W, Lianeri M, Dorszewska J. Homocysteine Level and Mechanisms of Injury in Parkinson's Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and LDopa Treatment. Current genomics. 2013; 14(8): 534-42. [ DOI:10.2174/1389202914666131210210559] 105. Markišić M, Pavlović AM, Pavlović DM. The impact of homocysteine, vitamin B12, and vitamin D levels on functional outcome after first-ever ischaemic stroke. BioMed research international. 2017; 2017. [ DOI:10.1155/2017/5489057] 106. Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN. The metabolism and significance of homocysteine in nutrition and health. Nutrition & metabolism. 2017; 14(1): 1-12. [ DOI:10.1186/s12986-017-0233-z] 107. Maruyama K, Eshak ES, Kinuta M, Nagao M, Cui R, Imano H, et al. Association between vitamin B group supplementation with changes in% flow-mediated dilatation and plasma homocysteine levels: a randomized controlled trial. Journal of Clinical Biochemistry and Nutrition. 2019; 64(3): 243-9. [ DOI:10.3164/jcbn.17-56] 108. Franco-Iborra S, Vila M, Perier C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson's disease and Huntington's disease, Front. Neurosci. 12 (2018) 342. 2018. [ DOI:10.3389/fnins.2018.00342] 109. Marashly ET, Bohlega SA. Riboflavin has neuroprotective potential: focus on Parkinson's disease and migraine. Frontiers in neurology. 2017; 8: 333. [ DOI:10.3389/fneur.2017.00333] 110. Brito A, Grapov D, Fahrmann J, Harvey D, Green R, Miller JW, et al. The human serum metabolome of vitamin B-12 deficiency and repletion, and associations with neurological function in elderly adults. The Journal of Nutrition. 2017; 147(10): 1839-49. [ DOI:10.3945/jn.117.248278] 111. Shen L. Associations between B vitamins and Parkinson's disease. Nutrients. 2015; 7(9): 7197-208. [ DOI:10.3390/nu7095333] 112. De Lau L, Koudstaal P, Witteman J, Hofman A, Breteler M. Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology. 2006; 67(2): 315-8. [ DOI:10.1212/01.wnl.0000225050.57553.6d] 113. Dietiker C, Kim S, Zhang Y, Christine CW, Investigators NN-P. Characterization of vitamin B12 supplementation and correlation with clinical outcomes in a large longitudinal study of early Parkinson's disease. Journal of movement disorders. 2019; 12(2): 91. [ DOI:10.14802/jmd.18049] 114. Kennedy DO, editor power foods for the brain. Cerebrum: the Dana Forum on Brain Science; 2015: Dana Foundation. 115. Lương Kv, Nguyễn LT. The beneficial role of thiamine in Parkinson disease. CNS neuroscience & therapeutics. 2013; 19(7): 461-8. [ DOI:10.1111/cns.12078] 116. Costantini A, Fancellu R. An open-label pilot study with high-dose thiamine in Parkinson's disease. Neural Regeneration Research. 2016; 11(3): 406. [ DOI:10.4103/1673-5374.179047] 117. Håglin L, Johansson I, Forsgren L, Bäckman L. Intake of vitamin B before onset of Parkinson's disease and atypical parkinsonism and olfactory function at the time of diagnosis. European Journal of Clinical Nutrition. 2017; 71(1): 97-102. [ DOI:10.1038/ejcn.2016.181] 118. Grosso G, Bei R, Mistretta A, Marventano S, Calabrese G, Masuelli L, et al. Effects of vitamin C on health: a review of evidence. Front Biosci (Landmark Ed). 2013; 18(3): 1017-29. [ DOI:10.2741/4160] 119. Park H-A, Ellis AC. Dietary antioxidants and Parkinson's disease. Antioxidants. 2020; 9(7): 570. [ DOI:10.3390/antiox9070570] 120. Shah SA, Yoon GH, Kim H-O, Kim MO. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem Res. 2015; 40(5): 875-84. [ DOI:10.1007/s11064-015-1540-2] 121. Nagayama H, Hamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clinical neuropharmacology. 2004; 27(6): 270-3. [ DOI:10.1097/01.wnf.0000150865.21759.bc] 122. Hughes KC, Gao X, Kim IY, Rimm EB, Wang M, Weisskopf MG, et al. Intake of antioxidant vitamins and risk of Parkinson's disease. Movement Disorders. 2016; 31(12): 1909-14. [ DOI:10.1002/mds.26819] 123. Nguyễn LTH. Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Molecular Brain. 2013; 6(1): 1-12. [ DOI:10.1186/1756-6606-6-16] 124. Gold J, Shoaib A, Gorthy G, Grossberg GT. The role of vitamin D in cognitive disorders in older adults. US Neurology. 2018; 14(1): 41-6. [ DOI:10.17925/USN.2018.14.1.41] 125. Shrestha S, Lutsey PL, Alonso A, Huang X, Mosley Jr TH, Chen H. S erum 25‐hydroxyvitamin D concentrations in Mid‐adulthood and P arkinson's disease risk. Movement Disorders. 2016; 31(7): 972-8. [ DOI:10.1002/mds.26573] 126. Sleeman I, Aspray T, Lawson R, Coleman S, Duncan G, Khoo TK, et al. The role of vitamin D in disease progression in early Parkinson's disease. Journal of Parkinson's disease. 2017; 7(4): 669-75. [ DOI:10.3233/JPD-171122] 127. Brandi M. Indications on the use of vitamin D and vitamin D metabolites in clinical phenotypes. Clinical Cases in Mineral and Bone Metabolism. 2010; 7(3): 243. 128. Sunyecz JA. The use of calcium and vitamin D in the management of osteoporosis. Therapeutics and clinical risk management. 2008; 4(4): 827. [ DOI:10.2147/TCRM.S3552] 129. Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EM. Systematic review of the relationship between vitamin D and Parkinson's disease. Journal of Parkinson's disease. 2016; 6(1): 29-37. [ DOI:10.3233/JPD-150615] 130. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role of vitamin D in brain health: a mini literature review. Cureus. 2018; 10(7). [ DOI:10.7759/cureus.2960] 131. Fullard ME, Duda JE. A review of the relationship between vitamin D and Parkinson disease symptoms. Frontiers in neurology. 2020; 11: 454. [ DOI:10.3389/fneur.2020.00454] 132. Chatterjee R, Chatterjee K, Sen C. Reversible parkinsonism due to vitamin D toxicity. Journal of Neurosciences in Rural Practice. 2017; 8(02): 305-6. [ DOI:10.4103/jnrp.jnrp_497_16] 133. Luo X, Ou R, Dutta R, Tian Y, Xiong H, Shang H. Association between serum vitamin D levels and Parkinson's disease: a systematic review and meta-analysis. Frontiers in Neurology. 2018; 9: 909. [ DOI:10.3389/fneur.2018.00909] 134. Luthra NS, Kim S, Zhang Y, Christine CW. Characterization of vitamin D supplementation and clinical outcomes in a large cohort of early Parkinson's disease. Journal of clinical movement disorders. 2018; 5(1): 1-5. [ DOI:10.1186/s40734-018-0074-6] 135. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal. 2014; 14(2): e157. 136. Schirinzi T, Martella G, Imbriani P, Di Lazzaro G, Franco D, Colona VL, et al. Dietary Vitamin E as a protective factor for Parkinson's disease: clinical and experimental evidence. Frontiers in Neurology. 2019; 10: 148. [ DOI:10.3389/fneur.2019.00148] 137. Ricciarelli R, Argellati F, Pronzato MA, Domenicotti C. Vitamin E and neurodegenerative diseases. Molecular aspects of medicine. 2007; 28(5-6): 591-606. [ DOI:10.1016/j.mam.2007.01.004] 138. Fahn S. A pilot trial of high‐dose alpha‐tocopherol and ascorbate in early Parkinson's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1992; 32(S1): S128-S32. [ DOI:10.1002/ana.410320722] 139. Vatassery GT, Fahn S, Kuskowski MA. Alpha tocopherol in CSF of subjects taking high‐dose vitamin E in the DATATOP study. Neurology. 1998; 50(6): 1900-2. [ DOI:10.1212/WNL.50.6.1900] 140. Molina J, De Bustos F, Jiménez-Jiménez F, Benito-León J, Ortí-Pareja M, Gasallo T, et al. Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Parkinson's disease. Journal of neural transmission. 1997; 104(11): 1287-93. [ DOI:10.1007/BF01294729] 141. Conrad GD. Is Ginkgo biloba and/or a Multivitamin-multimineral Supplement a Therapeutic Option for Parkinson's Disease? A Case Report. Global Advances in Health and Medicine. 2014; 3(4): 43-4. [ DOI:10.7453/gahmj.2013.096] 142. Yu Y-X, Yu X-D, Cheng Q-z, Tang L, Shen M-Q. The association of serum vitamin K2 levels with Parkinson's disease: from basic case-control study to big data mining analysis. Aging (Albany NY). 2020; 12(16): 16410. [ DOI:10.18632/aging.103691] 143. Di Somma C, Scarano E, Barrea L, Zhukouskaya VV, Savastano S, Mele C, et al. Vitamin D and neurological diseases: an endocrine view. International journal of molecular sciences. 2017; 18(11): 2482. [ DOI:10.3390/ijms18112482]
|