[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 11, Issue 3 (Summer 2023) ::
Shefaye Khatam 2023, 11(3): 11-24 Back to browse issues page
A New Visual Biofeedback Protocol Based on Analyzing the Muscle Synergy Patterns to Recover the Upper Limbs Movement in Ischemic Stroke Patients: A Pilot Study
Ali Zendehbad , Hamid Reza Kobravi * , Mohammad Mahdi Khalilzadeh , Athena Sharifi Razavi , Payam Sasannejad
Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran , hkobravi@mshdiau.ac.ir
Abstract:   (951 Views)
Introduction: Upper limb functional disability is a common after-effect among stroke survivors. The main goal of this study was to present a visual biofeedback protocol to identify a model based on synergy patterns of the elbow muscles for motor learning and rehabilitation of stroke survivors with hemiparesis. Materials and Methods: First, kinematic data related to the position of four joints and the surface electromyography signal of four muscles involved in the arm movement in the transverse plane were collected, preprocessed, and synchronized. In the next step, muscle synergy patterns were extracted using the Hierarchical Alternating Least Squares (HALS) method, and at the same time, kinematic data were recorded by the modified MediaPipe algorithm. Finally, a deep learning model based on the Gated Recursive Unit (GRU) was used to map between them. The model output was regarded as the visual biofeedback trajectory to conduct the exercise therapy by the patients. Results: The evaluations showed that the path produced by the proposed model is potentially suitable for visual biofeedback. Moreover, the artificial neural network based on GRU architecture has had the best performance in generating the visual biofeedback trajectory. Conclusion: Experimental and clinical evaluations will show that participants can acceptably follow the visual trajectory generated by the model. Therefore, this mechanism can be used to improve and develop biofeedback systems to accelerate the functional rehabilitation of patients with hemiplegia caused by ischemic stroke along with other conventional rehabilitation methods.
Keywords: Electromyography, Ischemic Stroke, Neurological Rehabilitation, Upper Extremity
Full-Text [PDF 2593 kb]   (232 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Neurorehabilation
1. Kim JS, Caplan LR. Clinical stroke syndromes. Intracranial Atherosclerosis: Pathophysiology, Diagnosis and Treatment. 2016; 40: 72-92. [DOI:10.1159/000448303]
2. Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proceedings of the National Academy of Sciences. 2009; 106(46): 19563-8. [DOI:10.1073/pnas.0910114106]
3. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Current opinion in neurology. 2006; 19(1): 84-90. [DOI:10.1097/01.wco.0000200544.29915.cc]
4. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disability and Rehabilitation: Assistive Technology. 2016; 11(4): 263-80. [DOI:10.3109/17483107.2014.1002539]
5. Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. Journal of Nippon Medical School. 2008; 75(1): 4-14. [DOI:10.1272/jnms.75.4]
6. Bonini-Rocha AC, de Andrade ALS, dos Santos Pereira R, de Moraes AM, Matheus LBG, da Fonseca ST, et al. Biofeedback interventions for short term upper limb function following stroke: A systematic review with meta-analysis. Journal of Hand Therapy. 2022. [DOI:10.1016/j.jht.2022.05.001]
7. Schmidt RA, White JL. Evidence for an error detection mechanism in motor skills: A test of Adams' closed-loop theory. Journal of Motor Behavior. 1972; 4(3): 143-53. [DOI:10.1080/00222895.1972.10734930]
8. Seitz AR. Cognitive neuroscience: targeting neuroplasticity with neural decoding and biofeedback. Current Biology. 2013; 23(5): R210-R2. [DOI:10.1016/j.cub.2013.01.015]
9. Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. Journal of neuroengineering and rehabilitation. 2006; 3(1): 1-12. [DOI:10.1186/1743-0003-3-11]
10. Teasell R, McIntyre A, Viana R, Bateman EA, Murie-Fernandez M, Janzen S, et al. Developing a framework for utilizing adjunct rehabilitation therapies in motor recovery of upper extremity post stroke. Topics in Stroke Rehabilitation. 2022: 1-8. [DOI:10.1080/10749357.2022.2070364]
11. Hall S, Wild F. Real-time auditory biofeedback system for learning a novel arm trajectory: a usability study. Perspectives on Wearable Enhanced Learning (WELL): Springer; 2019. p. 385-409. [DOI:10.1007/978-3-319-64301-4_18]
12. Isakova E, Egorova YV. Visual and acoustic feedback on the support reaction for upper and lower extremities: a case study of a female patient after a stroke. Almanac of Clinical Medicine. 2021; 49(6): 435-42. [DOI:10.18786/2072-0505-2021-49-016]
13. Hankinson K, Shaykevich A, Vallence A-M, Rodger J, Rosenberg M, Etherton-Beer C. A Tailored Music-Motor Therapy and Real-Time Biofeedback Mobile Phone App ('GotRhythm') to Promote Rehabilitation Following Stroke: A Pilot Study. Neuroscience Insights. 2022; 17: 26331055221100587. [DOI:10.1177/26331055221100587]
14. Giorgino T, Tormene P, Maggioni G, Capozzi D, Quaglini S, Pistarini C. Assessment of sensorized garments as a flexible support to self-administered post-stroke physical rehabilitation. European Journal of Physical and Rehabilitation Medicine. 2009; 45(1): 75-84.
15. Kim C-Y, Lee J-S, Lee J-H, Kim Y-G, Shin A-R, Shim Y-H, et al. Effect of spatial target reaching training based on visual biofeedback on the upper extremity function of hemiplegic stroke patients. Journal of physical therapy science. 2015; 27(4): 1091-6. [DOI:10.1589/jpts.27.1091]
16. Brokaw EB, Eckel E, Brewer BR. Usability evaluation of a kinematics focused Kinect therapy program for individuals with stroke. Technology and Health Care. 2015; 23(2): 143-51. [DOI:10.3233/THC-140880]
17. Lin L-F, Lin Y-J, Lin Z-H, Chuang L-Y, Hsu W-C, Lin Y-H. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study. European journal of physical and rehabilitation medicine. 2017; 54(3): 388-96. [DOI:10.23736/S1973-9087.17.04691-3]
18. Ögün MN, Kurul R, Yaşar MF, Turkoglu SA, Avci Ş, Yildiz N. Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arquivos de neuro-psiquiatria. 2019; 77: 681-8. [DOI:10.1590/0004-282x20190129]
19. Kobravi H-R, Erfanian A. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles. Journal of neural engineering. 2009; 6(4): 046007. [DOI:10.1088/1741-2560/6/4/046007]
20. Zadnia A, Kobravi HR, Sheikh M, Hosseini HA. Generating the visual biofeedback signals applicable to reduction of wrist spasticity: A pilot study on stroke patients. Basic and Clinical Neuroscience. 2018; 9(1): 15. [DOI:10.29252/nirp.bcn.9.1.15]
21. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders e-book: clinical-electrophysiologic correlations (Expert Consult-Online): Elsevier Health Sciences; 2012. [DOI:10.1016/B978-1-4557-2672-1.00016-7]
22. Merletti R, Aventaggiato M, Botter A, Holobar A, Marateb H, Vieira TM. Advances in surface EMG: recent progress in detection and processing techniques. Critical Reviews™ in Biomedical Engineering. 2010; 38(4). [DOI:10.1615/CritRevBiomedEng.v38.i4.10]
23. Merletti R, Di Torino P. Standards for reporting EMG data. J Electromyogr Kinesiol. 1999; 9(1): 3-4.
24. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of neurophysiology. 2010; 103(2): 844-57. [DOI:10.1152/jn.00825.2009]
25. Zhang F, Bazarevsky V, Vakunov A, Tkachenka A, Sung G, Chang C-L, et al. Mediapipe hands: On-device real-time hand tracking. arXiv preprint arXiv:200610214. 2020.
26. Hong YNG, Ballekere AN, Fregly BJ, Roh J. Are muscle synergies useful for stroke rehabilitation? Current Opinion in Biomedical Engineering. 2021; 19: 100315. [DOI:10.1016/j.cobme.2021.100315]
27. Hou Y, Xing S, Xu Q, editors. HALS-based algorithm for affine non-negative matrix factorization. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2014: IEEE. [DOI:10.1109/SMC.2014.6974591]
28. Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M, et al. Mediapipe: A framework for building perception pipelines. arXiv preprint arXiv:190608172. 2019.
29. d'Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies in the construction of a natural motor behavior. Nature neuroscience. 2003; 6(3): 300-8. [DOI:10.1038/nn1010]
30. Phan AH, Cichocki A. Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neurocomputing. 2011; 74(11): 1956-69. [DOI:10.1016/j.neucom.2010.06.031]
31. Cichocki A, Phan AH, Caiafa C, editors. Flexible HALS algorithms for sparse non-negative matrix/tensor factorization. 2008 Ieee Workshop on Machine Learning for Signal Processing; 2008: IEEE. [DOI:10.1109/MLSP.2008.4685458]
32. Diaconescu E. The use of NARX neural networks to predict chaotic time series. Wseas Transactions on computer research. 2008; 3(3): 182-91.
33. Dorffner G, editor Neural networks for time series processing. Neural network world; 1996: Citeseer.
34. Lin T, Horne BG, Tino P, Giles CL. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks. 1996; 7(6): 1329-38. [DOI:10.1109/72.548162]
35. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks. 1994; 5(2): 157-66. [DOI:10.1109/72.279181]
36. Elman JL. Finding structure in time. Cognitive science. 1990; 14(2): 179-211. [DOI:10.1207/s15516709cog1402_1]
37. Liu X, Lin Z, Feng Z. Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM. Energy. 2021; 227: 120492. [DOI:10.1016/j.energy.2021.120492]
38. Kubat M. Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. The Knowledge Engineering Review. 1999; 13(4): 409-12. [DOI:10.1017/S0269888998214044]
39. Menezes Jr JMP, Barreto GA. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing. 2008; 71(16-18): 3335-43. [DOI:10.1016/j.neucom.2008.01.030]
40. Kubota S, Hara Y, Shimizu Y, Kadone H, Kubo T, Marushima A, et al. A newly developed upper limb single-joint HAL in a patient with elbow flexion reconstruction after traumatic brachial plexus injury: a case report. Interdisciplinary Neurosurgery. 2017; 10: 66-8. [DOI:10.1016/j.inat.2017.07.005]
41. mazrooei e, azarnoosh m, ghoshuni m, khalilzadeh m. Comparison of the Function of the Elman Neural Network and the Deep Neural Network for the Diagnosis of Mild Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2021; 10(1): 1-11. [DOI:10.52547/shefa.10.1.1]
42. mazrooei rad e, pazhoumand h, salmani bajestani s. Separation of Healthy Individuals and Patients with Alzheimer's Disease Using the Effective Communication of Brain Signals. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 1-12. [DOI:10.52547/shefa.11.1.1]
43. Esmaili Jami A, Khalilzadeh MA, Ghoshuni M, Khalilzadeh MM. Estimation of Attention Indices in IVA Tests Using Optical Flow in ERP Brain Maps. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 46-56. [DOI:10.52547/shefa.11.1.46]
44. Majdi H, Azarnoosh M, Ghoshuni M, Sabzevari V. Using Visibility Graph to Analyze Brain Connectivity. The Neuroscience Journal of Shefaye Khatam. 2022; 10(2): 57-67.
45. oluki m, mahmoudi f, abdolmaleki a. Therapeutic Factors in Ischemic Stroke Control. The Neuroscience Journal of Shefaye Khatam. 2022; 10(4): 77-91. [DOI:10.52547/shefa.10.4.77]
46. heyrani a, azizidarabkhani n. The Effects of Bilateral Motor Training on the Power of Grip in Affected Hand of Children with Spastic Hemiplegic Cerebral Palsy. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 27-35. [DOI:10.52547/shefa.9.3.27]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zendehbad A, Kobravi H R, Khalilzadeh M M, Sharifi Razavi A, Sasannejad P. A New Visual Biofeedback Protocol Based on Analyzing the Muscle Synergy Patterns to Recover the Upper Limbs Movement in Ischemic Stroke Patients: A Pilot Study. Shefaye Khatam 2023; 11 (3) :11-24
URL: http://shefayekhatam.ir/article-1-2370-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (Summer 2023) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4639