[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 12, Issue 1 (Winter 2023) ::
Shefaye Khatam 2023, 12(1): 85-93 Back to browse issues page
Use of Nanoparticles by Overcoming the Blood-Brain Barrier in the Treatment of Central Nervous System Diseases
Arash Abdolmaleki * , Mehdi Tamjid , Fereshteh Ashrafiyan Nansa , Fatemeh Golivand , Zahra Chavoshi Lahrod , Niloufar Bahari , Shukur Wasman Smail , Zhikal Omar Khudhur
Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran , abdolmalekiarash1364@gmail.com
Abstract:   (1712 Views)
Introduction: The brain is the most complex and evolved human organ, so protecting its function is a vital issue. The blood-brain barrier formed by the microvascular system of the brain is a membrane strip that separates the blood from the extracellular compartment of the brain in the central nervous system of most vertebrates. The blood-brain barrier is a single layer of endothelial cells that consists of five parts: pericytes, astrocytes, neurons, basement membrane, and connective tissues. The blood-brain barrier is a major barrier to drug delivery to the brain. To effectively release drugs into the brain, various methods have been developed. Among them, drug delivery with nanoparticles has many advantages, including non-invasiveness, cost-effectiveness, better biodegradability, and long-term stability. Conclusion: Investigating the structure and function of the blood-brain barrier, as well as the evaluation of various systems affecting this structure, especially the use of nanoparticles, can play an important role in helping to treat central nervous system diseases.
 
Keywords: Nanoparticles, Blood-Brain Barrier, Central Nervous System
Full-Text [PDF 764 kb]   (579 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurophysiology
References
1. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb perspect med. 2015; 5(6): 22-9. [DOI:10.1101/cshperspect.a022426]
2. Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, et al. Ascorbic acid facilitates neural regeneration after sciatic nerve crush injury. Front Cell Neurosci. 2019; 13(9): 108-9. [DOI:10.3389/fncel.2019.00108]
3. Thom M, Boldrini M, Bundock E, Sheppard MN, Devinsky O. The past, present and future challenges in epilepsy‐related and sudden deaths and biobanking. Neuropathol Appl Neurobiol. 2018; 44(1): 32-55. [DOI:10.1111/nan.12453]
4. Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012; 11(9): 792-802. [DOI:10.1016/S1474-4422(12)70153-9]
5. Jia H, Wang Y, Chen J, Li JP, Han HQ, Tong XJ, et al. Combination of BMSCs‐laden acellular nerve xenografts transplantation and G‐CSF administration promotes sciatic nerve regeneration. Synapse. 2019; 73(7): 22-5. [DOI:10.1002/syn.22093]
6. Kwan P, Brodie MJ. Early identification of refractory epilepsy. NEJM. 2000; 342(5): 314-9. [DOI:10.1056/NEJM200002033420503]
7. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7(1): 30-37. [DOI:10.1038/nrneurol.2010.178]
8. Chen L, Wei Y, Zhao S, Zhang M, Yan X, Gao X, et al. Antitumor and immunomodulatory activities of total flavonoids extract from persimmon leaves in H22 liver tumor-bearing mice. Sci Rep. 2018; 8(1): 10-9. [DOI:10.1038/s41598-018-28440-8]
9. He N, Wang P, Niu Y, Chen J, Li C, Kang W-y. Evaluation antithrombotic activity and action mechanism of myricitrin. Ind Crops Prod. 2019; 12(9): 536-41. [DOI:10.1016/j.indcrop.2018.12.036]
10. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxidative Med Cell Longev. 2018; 20(1): 8-22. [DOI:10.1155/2018/7496936]
11. Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact. 2015; 23(10): 21-9. [DOI:10.1016/j.cbi.2015.01.030]
12. Zhang B, Shen Q, Chen Y, Pan R, Kuang S, Liu G, et al. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep. 2017; 11(7): 44-9. [DOI:10.1038/srep44239]
13. Lei Y. Myricitrin decreases traumatic injury of the spinal cord and exhibits antioxidant and anti‑inflammatory activities in a rat model via inhibition of COX‑2, TGF‑β1, p53 and elevation of Bcl‑2/Bax signaling pathway. Mol Med Rep. 2017; 16(5): 7699-705. [DOI:10.3892/mmr.2017.7567]
14. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol. 2019; 10(5): 48-6. [DOI:10.3389/fphys.2019.00486]
15. Patel DC, Wallis G, Dahle EJ, McElroy PB, Thomson KE, Tesi RJ, et al. Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. Eneuro. 2017; 4(2): 22-9. [DOI:10.1523/ENEURO.0105-17.2017]
16. Shandra A, Godlevsky L, Vastyanov R, Oleinik A, Konovalenko V, Rapoport E, et al. The role of TNF-α in amygdala kindled rats. Neurosci Res. 2002; 42(2): 147-53. [DOI:10.1016/S0168-0102(01)00309-1]
17. Guzzo EFM, Lima KR, Vargas CR, Coitinho AS. Effect of dexamethasone on seizures and inflammatory profile induced by Kindling Seizure Model. J Neuroimmunol. 2018; 32(5): 92-8. [DOI:10.1016/j.jneuroim.2018.10.005]
18. Meyer E, Mori MA, Campos AC, Andreatini R, Guimarães FS, Milani H, et al. Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice. Behav Brain Res. 2017; 31(6): 59-65. [DOI:10.1016/j.bbr.2016.08.048]
19. Cassano T, Pace L, Bedse G, Michele Lavecchia A, De Marco F, Gaetani S, et al. Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration. Curr Alzheimer Res. 2016; 13(2): 185-97. [DOI:10.2174/1567205013666151218132725]
20. Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Adv Pharm Bull. 2020; 11(3): 450-7. [DOI:10.34172/apb.2021.052]
21. Aran S, Zahri S, Asadi A, Khaksar F, Abdolmaleki A. Hair follicle stem cells differentiation into bone cells on collagen scaffold. Cell Tissue Bank. 2020; 21(2): 181-8. [DOI:10.1007/s10561-020-09812-9]
22. Tamjid M, Mahmoudi F, Abdolmaleki A, Mirzaee S. Preparation of omega-3 coated iron oxide nanoparticles and its effect on liver, renal and splenic function in rats: An experimental study. J Rafsanjan Univ Med Sci. 2021; 20 (8): 879-90. [DOI:10.52547/jrums.20.8.879]
23. Pereira M, Siba I, Chioca L, Correia D, Vital M, Pizzolatti M, et al. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011; 35(7): 1636-44. [DOI:10.1016/j.pnpbp.2011.06.002]
24. Feng, Y., Cao, Y., Qu, Z., Janjua, T. I., & Popat, A. Virus-like Silica Nanoparticles Improve Permeability of Macromolecules across the Blood-Brain Barrier In Vitro. Pharmaceutics. 2023; 38(8): 16-46.‏ [DOI:10.3390/pharmaceutics15092239]
25. Zhang, W., Zhu, D., Tong, Z., Peng, B., Cheng, X., Esser, L., & Voelcker, N. H. Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood-Brain Barrier by Porous Silicon Nanoparticles. Pharmaceutics.‏ 2023; 30(3): 1636-47.
26. Song, X., Qian, H., & Yu, Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. Small, 2023; 43(7): 13-64.‏ [DOI:10.1002/smll.202302613]
27. Xie, L., Lin, H., Lv, L., Zhang, W., Feng, F., Liu, F., ... & Han, L. Rhynchophylline-encapsulating core-shell nanoparticles to overcome blood-brain-barrier and inhibit drug efflux for efficient anti-Parkinson therapy. Applied Materials Today.‏ 2023; 35(4): 123-67. [DOI:10.1016/j.apmt.2022.101715]
28. Rodgers, T. M., Muzzio, N., Valero, A., Ahmad, I., Ludtke, T. U., Moya, S. E., & Romero, G. Poly (β-amino ester) Nanoparticles Modified with a Rabies-Virus-Derived Peptide for the Delivery of ASCL1 across a 3D In Vitro Model of the Blood-Brain Barrier. ACS Applied Nano Materials.‏ 2023; 36(7): 136-44. [DOI:10.1021/acsanm.3c00651]
29. Dong, C. Y., Huang, Q. X., Cheng, H., Zheng, D. W., Hong, S., Yan, Y., ... & Zhang, X. Z. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma. Advanced Materials.‏ 2022; 35(13): 166-49. [DOI:10.1002/adma.202109213]
30. Kumari, A., Vyas, V., & Kumar, S. Synthesis, characterization, and applications of gold nanoparticles in development of plasmonic optical fiber-based sensors. Nanotechnology.‏ 2022; 33(3): 16-67.
31. Sakthi Devi, R., Girigoswami, A., Siddharth, M., & Girigoswami, K. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology.‏ 2022; 34(6): 16-44.
32. Ahmed, R., Uddin, M. K., Quddus, M. A., Samad, M. Y. A., Hossain, M. A., & Haque, A. N. A. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae.‏ 2023; 37(9): 132-55. [DOI:10.3390/horticulturae9020162]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

abdolmaleki A, Tamjid M, Ashrafiyan Nansa F, Golivand F, chavoshi Lahrod Z, Bahari N, et al . Use of Nanoparticles by Overcoming the Blood-Brain Barrier in the Treatment of Central Nervous System Diseases. Shefaye Khatam 2023; 12 (1) :85-93
URL: http://shefayekhatam.ir/article-1-2408-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 1 (Winter 2023) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4700