[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..

..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 11، شماره 4 - ( پاییز 1402 ) ::
دوره 11 شماره 4 صفحات 93-79 برگشت به فهرست نسخه ها
کاربرد فناوری چاپ زیستی سه‌بعدی در درمان ضایعات طناب نخاعی
آرش عبدالملکی ، لیلا تقی زاده مومن ، اسداله اسدی* ، شوکور واسمن اسماعیل
گروه زیست ‌شناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران ، asad.asady@gmail.com
چکیده:   (418 مشاهده)
مقدمه: آسیب طناب نخاعی یک بیماری مرتبط با سیستم عصبی مرکزی است که منجر به اختلال در عملکردهای حسی و حرکتی، از دست دادن آکسون، جسم سلولی و پشتیبانی سلول‌های گلیال می‌شود. در حال حاضر، درمان آسیب‌های نخاعی محدود به فیزیوتراپی، کاردرمانی و جراحی است. با این حال، روش‌های درمانی فعلی نمی‌توانند به طور کامل و مؤثر رشته‌های عصبی آسیب دیده را بازسازی کرده و عملکرد عصب را بهبود بخشند. مهندسی بافت عصبی متمرکز بر ساخت داربست‌های بیومیمتیک الهام گرفته از ساختار پیچیده نخاع به همراه سلول‌ها در جهت ترمیم ضایعات نخاعی می‌باشد. در سال‌های اخیر، از روش چاپ زیستی سه‌بعدی برای ساخت مدل‌های زیستی بسیار تخصصی و پیچیده مانند نخاع استفاده شده است. چاپ زیستی با قرار دادن جوهر زیستی بر روی یک بستر به صورت لایه لایه انجام می شود. رویکرد افزودنی چاپ زیستی امکان ساخت مدل‌های بافتی سه بعدی ظریف را با کنترل دقیق بر موقعیت مکانی سلول‌ها فراهم می‌کند. نتیجه‌گیری: استفاده از فناوری چاپ زیستی سه بعدی در زمینه ساخت داربست‌های غنی از سلول و مطالعات درون‌تنی در مدل‌های آسیب طناب نخاعی نشان‌دهنده چشم انداز روشن این فناوری در زمینه درمان ضایعات نخاعی است. با این حال، برای شبیه‌سازی کامل بافت نخاع و بهبود عملکرد عصبی نخاع پس از آسیب، لازم است تحقیقات بیشتری با سلول‌ها، بیومواد و مدل‌های آسیب نخاعی مختلف انجام شود. در مقاله مروری حاضر، به روش چاپ زیستی سه‌بعدی، انواع تکنیک‌های چاپ در مهندسی بافت طناب نخاعی و مطالعات انجام شده در راستای کاربرد چاپ زیستی در درمان ضایعات طناب نخاعی پرداخته شده است.
 
واژه‌های کلیدی: چاپ زیستی، آسیب طناب نخاعی، مهندسی بافت
متن کامل [PDF 944 kb]   (183 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: ترميم عصبي
فهرست منابع
1. Maribo T, Jensen CM, Madsen LS, Handberg C. Experiences with and perspectives on goal setting in spinal cord injury rehabilitation: a systematic review of qualitative studies. Spinal Cord. 2020;58(9):949-58. [DOI:10.1038/s41393-020-0485-8]
2. Luthra A, Prabhakar H. Chapter 10 - Postoperative Paraplegia and Quadriplegia. In: Prabhakar H, editor. Complications in Neuroanesthesia. San Diego: Academic Press; 2016. p. 77-87. [DOI:10.1016/B978-0-12-804075-1.00010-9]
3. Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A, Sabahi Namini A. Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. Br J Neurosurg. 2020:1-6. [DOI:10.1080/02688697.2020.1864292]
4. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology. 2019;10. [DOI:10.3389/fneur.2019.00282]
5. Liu Z, Yang Y, He L, Pang M, Luo C, Liu B, et al. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology. 2019;93(9):e841-e50. [DOI:10.1212/WNL.0000000000007998]
6. Cheung V, Hoshide R, Bansal V, Kasper E, Chen CC. Methylprednisolone in the management of spinal cord injuries: Lessons from randomized, controlled trials. Surg Neurol Int. 2015;6:142. [DOI:10.4103/2152-7806.163452]
7. Katoh H, Yokota K, Fehlings MG. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Frontiers in cellular neuroscience. 2019;13:248. [DOI:10.3389/fncel.2019.00248]
8. O'Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. The Journal of clinical investigation. 2017;127(9):3259-70. [DOI:10.1172/JCI90608]
9. Abdolmaleki A, Karimian A, Asadi A, A. Ghanimi H. 3D Bioprinting Applications as New Technology for Nerve Regeneration. Zahedan J Res Med Sci. 2023;25(2):e121121. [DOI:10.5812/zjrms-121121]
10. Abdolmaleki A, Zahri S, Asadi A, Wassersug R. Role of Tissue Engineering and Regenerative Medicine in Treatment of Sport Injuries. Trauma Monthly. 2020;25(3):106-12.
11. Abdolmaleki A, Asadi A, Taghizadeh Momen L, Parsi Pilerood S. The Role of Neural Tissue Engineering in the Repair of Nerve Lesions. The Neuroscience Journal of Shefaye Khatam. 2020;8(3):80-96. [DOI:10.29252/shefa.8.3.80]
12. Liu K, Yan L, Li R, Song Z, Ding J, Liu B, et al. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Advanced Science. 2022;9(12):2103875. [DOI:10.1002/advs.202103875]
13. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Materials Science and Engineering: C. 2020;110:110741. [DOI:10.1016/j.msec.2020.110741]
14. Zhang B, Luo Y, Ma L, Gao L, Li Y, Xue Q, et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing. 2018;1:2-13. [DOI:10.1007/s42242-018-0004-3]
15. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nature biomedical engineering. 2020;4(4):370-80. [DOI:10.1038/s41551-019-0471-7]
16. Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nature medicine. 2019;25(2):263-9. [DOI:10.1038/s41591-018-0296-z]
17. Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol. 2022;10:847344. [DOI:10.3389/fbioe.2022.847344]
18. Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, et al. 3D printed nervous system on a chip. Lab Chip. 2016;16(8):1393-400. [DOI:10.1039/C5LC01270H]
19. Ravnic DJ, Leberfinger AN, Koduru SV, Hospodiuk M, Moncal KK, Datta P, et al. Transplantation of bioprinted tissues and organs: Technical and clinical challenges and future perspectives. Annals of Surgery. 2017;266(1):48-58. [DOI:10.1097/SLA.0000000000002141]
20. Vijayavenkataraman S, Yan W-C, Lu WF, Wang C-H, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Advanced drug delivery reviews. 2018;132:296-332. [DOI:10.1016/j.addr.2018.07.004]
21. Xie Z, Gao M, Lobo AO, Webster TJ. 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers. 2020;12(8):1717. [DOI:10.3390/polym12081717]
22. Hockaday L, Kang K, Colangelo N, Cheung P, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005. [DOI:10.1088/1758-5082/4/3/035005]
23. Vettori L, Sharma P, Rnjak-Kovacina J, Gentile C. 3D bioprinting of cardiovascular tissues for in vivo and in vitro applications using hybrid hydrogels containing silk fibroin: state of the art and challenges. Current Tissue Microenvironment Reports. 2020;1:261-76. [DOI:10.1007/s43152-020-00026-5]
24. Seol Y-J, Kang H-W, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. European Journal of Cardio-Thoracic Surgery. 2014;46(3):342-8. [DOI:10.1093/ejcts/ezu148]
25. Ali M, PR AK, Lee SJ, Jackson JD. Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current opinion in organ transplantation. 2018;23(6):649-56. [DOI:10.1097/MOT.0000000000000581]
26. Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: Advantages, deficiencies, improvements, and future perspectives. Journal of Materials Chemistry B. 2021;9(27):5385-413. [DOI:10.1039/D1TB00172H]
27. Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S. Current developments in 3D bioprinting for tissue and organ regeneration-a review. Frontiers in Mechanical Engineering. 2020;6:589171. [DOI:10.3389/fmech.2020.589171]
28. Irvine SA, Venkatraman SS. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188. [DOI:10.3390/molecules21091188]
29. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. [DOI:10.1016/j.biomaterials.2019.119536]
30. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-46. [DOI:10.1039/C7BM00765E]
31. Chen J, Huang D, Wang L, Hou J, Zhang H, Li Y, et al. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. Journal of colloid and interface science. 2020;574:162-73. [DOI:10.1016/j.jcis.2020.04.040]
32. Zhang YS, Oklu R, Dokmeci MR, Khademhosseini A. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harbor perspectives in medicine. 2018;8(2):a025718. [DOI:10.1101/cshperspect.a025718]
33. Xing F, Xiang Z, Rommens PM, Ritz U. 3D bioprinting for vascularized tissue-engineered bone fabrication. Materials. 2020;13(10):2278. [DOI:10.3390/ma13102278]
34. Ghayour MB, Abdolmaleki A, Fereidoni M. Use of stem cells in the regeneration of peripheral nerve injuries: an overview. The Neuroscience Journal of Shefaye Khatam. 2015;3(1):84-98. [DOI:10.18869/acadpub.shefa.3.1.84]
35. Augustine R. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in biomaterials. 2018;7(2):77-92. [DOI:10.1007/s40204-018-0087-0]
36. Rosser J, Thomas DJ. Bioreactor processes for maturation of 3D bioprinted tissue. 3D Bioprinting for reconstructive surgery: Elsevier; 2018. p. 191-215. [DOI:10.1016/B978-0-08-101103-4.00010-7]
37. Smith LJ, Li P, Holland MR, Ekser B. FABRICA: a bioreactor platform for printing, perfusing, observing, & stimulating 3D tissues. Scientific reports. 2018;8(1):7561. [DOI:10.1038/s41598-018-25663-7]
38. Salehi-Nik N, Amoabediny G, Pouran B, Tabesh H, Shokrgozar MA, Haghighipour N, et al. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering. BioMed research international. 2013;2013. [DOI:10.1155/2013/762132]
39. Lima TdPL, Canelas CAdA, Concha VOC, Costa FAMd, Passos MF. 3D Bioprinting Technology and Hydrogels Used in the Process. Journal of Functional Biomaterials [Internet]. 2022; 13(4). [DOI:10.3390/jfb13040214]
40. Mohan MK, Rahul AV, De Schutter G, Van Tittelboom K. Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites. 2021;115:103855. [DOI:10.1016/j.cemconcomp.2020.103855]
41. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014;32(8):773-85. [DOI:10.1038/nbt.2958]
42. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-8. [DOI:10.1038/nature21003]
43. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 201.95-185:(4)4;7 [DOI:10.1016/j.gendis.2017.10.002]
44. Zhang X, Zhang Y. Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochem Biophys. 2015;72(3):777-82. [DOI:10.1007/s12013-015-0531-x]
45. Iwanaga S, Arai K, Nakamura M. Chapter 4 - Inkjet Bioprinting. In: Atala A, Yoo JJ, editors. Essentials of 3D Biofabrication and Translation. Boston: Academic Press; 2015. p. 61-79. [DOI:10.1016/B978-0-12-800972-7.00004-9]
46. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. [DOI:10.1088/1758-5090/8/3/032002]
47. O'Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev. 2015;21(1):103-14. [DOI:10.1089/ten.teb.2014.0168]
48. Rider P, Kačarević Ž P, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:2041731418802090. [DOI:10.1177/2041731418802090]
49. Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, et al. Inkjet Bioprinting of Biomaterials. Chemical Reviews. 2020;120(19):10793-833. [DOI:10.1021/acs.chemrev.0c00008]
50. Yuan T-Y, Zhang J, Yu T, Wu J-P, Liu Q-Y. 3D Bioprinting for Spinal Cord Injury Repair. Frontiers in Bioengineering and Biotechnology. 2022;10. [DOI:10.3389/fbioe.2022.847344]
51. Knowlton S, Yenilmez B, Anand S, Tasoglu S. Photocrosslinking-based bioprinting: Examining crosslinking schemes. Bioprinting. 2017;5:10-8. [DOI:10.1016/j.bprint.2017.03.001]
52. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-30. [DOI:10.1016/j.biomaterials.2010.04.050]
53. Edgar JM, Robinson M, Willerth SM. Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomater. 2017;51:237-45. [DOI:10.1016/j.actbio.2017.01.040]
54. Sakai S, Kamei H, Mori T, Hotta T, Ohi H, Nakahata M, et al. Visible Light-Induced Hydrogelation of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acid Red. Biomacromolecules. 2018;19(2):672-9. [DOI:10.1021/acs.biomac.7b01827]
55. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater. 201.56-144:(2)3;8 [DOI:10.1016/j.bioactmat.2017.11.008]
56. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. International journal of bioprinting. 2020;6(1). [DOI:10.18063/ijb.v6i1.242]
57. Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1-13. [DOI:10.1016/j.biomaterials.2018.12.009]
58. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature communications. 2018;9(1):1620. [DOI:10.1038/s41467-018-03759-y]
59. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing. 2015;3.53-42:(1) [DOI:10.1007/s40436-014-0097-7]
60. Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Composites Part B: Engineering. 2017;117:138-49. [DOI:10.1016/j.compositesb.2017.02.045]
61. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater. 2015;4(12):1742-62. [DOI:10.1002/adhm.201500168]
62. Rajaram A, Schreyer D, Chen D. Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability. 3D Printing and Additive Manufacturing. 2014;1(4):194-203. [DOI:10.1089/3dp.2014.0006]
63. Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D printed neural regeneration devices. Advanced functional materials. 2020;30(1):1906237. [DOI:10.1002/adfm.201906237]
64. Szymoniuk M, Mazurek M, Dryla A, Kamieniak P. The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury - A systematic review of preclinical in vivo studies. Exp Neurol. 2023;363:114366. [DOI:10.1016/j.expneurol.2023.114366]
65. Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263-9. [DOI:10.1038/s41591-018-0296-z]
66. Sarig-Nadir O, Livnat N, Zajdman R, Shoham S, Seliktar D. Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys J. 2009;96(11):4743-52. [DOI:10.1016/j.bpj.2009.03.019]
67. Liu X, Hao M, Chen Z, Zhang T, Huang J, Dai J, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials. 2021;272:120771. [DOI:10.1016/j.biomaterials.2021.120771]
68. Chen C, Zhao Ml, Zhang Rk, Lu G, Zhao Cy, Fu F, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. Journal of Biomedical Materials Research Part A. 2017;105(5):1.32-324 [DOI:10.1002/jbm.a.36011]
69. Jiang J-P, Liu X-Y, Zhao F, Zhu X, Li X-Y, Niu X-G, et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural regeneration research. 2020;15.959:(5) [DOI:10.4103/1673-5374.268974]
70. Li Y, Cao X, Deng W, Yu Q, Sun C, Ma P, et al. 3D printable Sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation. Journal of Biomaterials Applications. 2021;35(6):709-19. [DOI:10.1177/0885328220961261]
71. Wong DY, Leveque JC, Brumblay H, Krebsbach PH, Hollister SJ, Lamarca F. Macro-architectures in spinal cord scaffold implants influence regeneration. J Neurotrauma. 2008;25(8):1027-37. [DOI:10.1089/neu.2007.0473]
72. Joung D, Truong V, Neitzke CC, Guo SZ, Walsh PJ, Monat JR, et al. 3D printed stem‐cell derived neural progenitors generate spinal cord scaffolds. Advanced functional materials. 2018;28(39):1801850. [DOI:10.1002/adfm.201801850]
73. Sun Y, Yang C, Zhu X, Wang JJ, Liu XY, Yang XP, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. Journal of Biomedical Materials Research Part A. 2019;107(9):1898-908. [DOI:10.1002/jbm.a.36675]
74. Veeravalli RS, Vejandla B, Savani S, Nelluri A, Peddi NC. Three-Dimensional Bioprinting in Medicine: A Comprehensive Overview of Current Progress and Challenges Faced. Cureus. 2023;15.(7) [DOI:10.7759/cureus.41624]
75. Reddy VS, Ramasubramanian B, Telrandhe VM, Ramakrishna S. Contemporary standpoint and future of 3D bioprinting in tissue/organs printing. Current Opinion in Biomedical Engineering. 2023;27:100461. [DOI:10.1016/j.cobme.2023.100461]
76. Rizzo ML, Turco S, Spina F, Costantino A, Visi G, Baronti A, et al. 3D printing and 3D bioprinting technology in medicine: ethical and legal issues. Clin Ter. 2023;174(1):80-4.
77. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomaterials science. 2018;6(5):915-46. [DOI:10.1039/C7BM00765E]
78. Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. 3D Bioprinting and the Future of Surgery. Frontiers in Surgery. 2020;7. [DOI:10.3389/fsurg.2020.609836]
79. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes & Diseases. 2017;4(4):185-95. [DOI:10.1016/j.gendis.2017.10.002]
80. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199. [DOI:10.3390/ma11112199]
81. Datta P, Cabrera LY, Ozbolat IT. Ethical challenges with 3D bioprinted tissues and organs. Trends Biotechnol. 2023;41(1):6-9. [DOI:10.1016/j.tibtech.2022.08.012]
82. Mao H, Yang L, Zhu H, Wu L, Ji P, Yang J, et al. Recent advances and challenges in materials for 3D bioprinting. Progress in Natural Science: Materials International. 2020;30(5):618-34. [DOI:10.1016/j.pnsc.2020.09.015]
83. Lu D, Yang Y, Zhang P, Ma Z, Li W, Song Y, et al. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury. Tissue Engineering and Regenerative Medicine. 2022;19(6):1113-27. [DOI:10.1007/s13770-022-00465-1]
84. Song J, Lv B, Chen W, Ding P, He Y. Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair. International Journal of Extreme Manufacturing. 2023. [DOI:10.1088/2631-7990/acde21]
85. Xia QQ, Yuan H, Wang TH, Xiong LL, Xin ZJ. Application and progress of three‐dimensional bioprinting in spinal cord injury. Ibrain. 2021;7(4):325-36. [DOI:10.1002/ibra.12005]
86. Yuan T-Y, Zhang J, Yu T, Wu J-P, Liu Q-Y3.D bioprinting for spinal cord injury repair. Frontiers in Bioengineering and Biotechnology. 2022;10:847344. [DOI:10.3389/fbioe.2022.847344]
87. Lu D, Yang Y, Zhang P, Ma Z, Li W, Song Y, et al. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury. Tissue Engineering and Regenerative Medicine. 2022;19(6):1113-27. [DOI:10.1007/s13770-022-00465-1]
88. Amukarimi S, Mozafari M. 4D bioprinting of tissues and organs. Bioprinting. 2021;23:e00161. [DOI:10.1016/j.bprint.2021.e00161]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdolmaleki A, Taghizadeh Momen L, Asadi A, Wasman Smail S. The Application of 3D Bioprinting Technology in the Treatment of Spinal Cord Lesions. Shefaye Khatam 2023; 11 (4) :79-93
URL: http://shefayekhatam.ir/article-1-2428-fa.html

عبدالملکی آرش، تقی زاده مومن لیلا، اسدی اسداله، واسمن اسماعیل شوکور. کاربرد فناوری چاپ زیستی سه‌بعدی در درمان ضایعات طناب نخاعی. مجله علوم اعصاب شفای خاتم. 1402; 11 (4) :79-93

URL: http://shefayekhatam.ir/article-1-2428-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 4 - ( پاییز 1402 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 53 queries by YEKTAWEB 4652