[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Spring ::
Back to the articles list Back to browse issues page
Biomarkers of Neurological Diseases: A Comprehensive Review of Literature
Mohammad reza Valilu , Shiva Mehran , Arash Mossarezie , Someieh Mahmodi , Zafar Gholinejad *
Department of Laboratory Medical Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran , ghzafar@yahoo.com
Abstract:   (42 Views)
Introduction: The central nervous system and peripheral nerves are vital organs in living beings that constitute the most protected structures of the body. Neurological diseases exhibit diverse pathogenesis, mirrored by a wide array of relevant biomarkers. These biomarkers involve inflammation, oxidative stress, metabolic and genetic irregularities, and pharmaceutical influences. In this review, we introduce the concept of biomarkers and their classifications and provide a comprehensive review of the latest research findings on the most significant and prevalent biomarkers associated with neurological diseases. Oxidative stress biomarkers and inflammation mediators are the most common biomarkers in neurological diseases. MicroRNAs are the new molecular biomarker that helps the diagnosis and prognosis. Conclusion: Current knowledge has not been able to provide a biomarker with acceptable sensitivity and specificity in neurological diseases in most cases. The oxidative stress molecules are the most important in almost all brain and nerve diseases.
 
Keywords: Inflammation Mediators, Oxidative Stress, Nervous System Diseases, MicroRNAs
     
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurology
References
1. Tamjid, M., et al., Use of Nanoparticles by Overcoming the Blood-Brain Barrier in the Treatment of Central Nervous System Diseases. The Neuroscience Journal of Shefaye Khatam, 2023: p. 0-0.
2. Feigin V.L, Forouzanfar M, Krishnamurthi R, Mensah G, Connor M, Bennett D, et al. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet. 2014. 383(9913):245-55. [DOI:10.1016/S0140-6736(13)61953-4]
3. Bettger JP, Bushnell Ch.D, Liang L, Thomas L, Duncan PW, Xian Y, et al., Abstract TMP36: Disability, Quality of Life and Institutionalization After Inpatient Rehabilitation and Skilled Nursing Facility Care for Ischemic Stroke Patients. Stroke. 2016; 47(Suppl 1): ATMP36-ATMP36. [DOI:10.1161/str.47.suppl_1.tmp36]
4. Abedi, A., et al., Stroke Triage Scales for Patients with Neurosensory Complaints: A Literature Review. The Neuroscience Journal of Shefaye Khatam, 2023. 11(2): p. 81-92. [DOI:10.61186/shefa.11.2.81]
5. Xia J, Broadhurst DI, Wilson M, Wishart DS.Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013. 9: 280-99. [DOI:10.1007/s11306-012-0482-9]
6. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian journal of internal medicine. 2013; 4(2):627-35.
7. Soluki, M., F. Mahmoudi, and A. Abdolmaleki, Therapeutic Factors in Ischemic Stroke Control. 2022. [DOI:10.52547/shefa.10.4.77]
8. Bustamante A, Penalba A, Orset C, Azurmendi L, Llombart V , Simats A , et al. Blood biomarkers to differentiate ischemic and hemorrhagic strokes. Neurology. 2021; 96(15):e1928-e1939. [DOI:10.1212/WNL.0000000000011742]
9. Montellano FA, Ungethüm K, Ramiro L, Nacu A, Hellwig S, Fluri F, et al. Role of blood-based biomarkers in ischemic stroke prognosis: a systematic review. Stroke. 2021; 52(2):543-551. [DOI:10.1161/STROKEAHA.120.029232]
10. Salehnia F, Gholinejad Z, Nazarbaghi S, Rasmi Y, Nikpour MR. The Gender Difference of Routine Laboratory Tests Performance in Prediction of Early Mortality in Ischemic Stroke Patients. in Yeni Symposium. 2018. [DOI:10.5455/NYS.20180111022148]
11. Jang, J.H., S. Hong, and J.-A. Ryu, Prognostic value of C-reactive protein and albumin in Neurocritically ill patients with acute stroke. Journal of Clinical Medicine. 2022; 11(17):5067. [DOI:10.3390/jcm11175067]
12. Vila N, Castillo J, Dávalos A and Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000; 31(10): 2325-2329. [DOI:10.1161/01.STR.31.10.2325]
13. Ormstad H, Dalsbotten Aass HS, Lund-Sørensen N, Amthor KF, Sandvik L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. Journal of neurology. 2011; 258: 677-685. [DOI:10.1007/s00415-011-6006-0]
14. Kouli, A., K.M. Torsney, and W.-L. Kuan, Parkinson's disease: etiology, neuropathology, and pathogenesis. Exon Publications. 2018: 3-26. [DOI:10.15586/codonpublications.parkinsonsdisease.2018.ch1]
15. Repici, M. and F. Giorgini, DJ-1 in Parkinson's Disease: Clinical Insights and Therapeutic Perspectives. J Clin Med. 2019; 8(9). [DOI:10.3390/jcm8091377]
16. Cipriani, S., X. Chen, and M.A. Schwarzschild, Urate: a novel biomarker of Parkinson's disease risk, diagnosis and prognosis. Biomark Med. 2010; 4(5):701-12. [DOI:10.2217/bmm.10.94]
17. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain. 2010; 133(3):713-726. [DOI:10.1093/brain/awq008]
18. Shults, CW. Therapeutic role of coenzyme Q10 in Parkinson's disease. Pharmacology & therapeutics. 2005; 107(1):120-130. [DOI:10.1016/j.pharmthera.2005.02.002]
19. Negida A, Menshawy A, Ashal A EI, Elfouly Y, Hani Y, Hegazy Y, et al. Coenzyme Q10 for patients with Parkinson's disease: a systematic review and meta-analysis. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2016;15(1): 45-53. [DOI:10.2174/1871527314666150821103306]
20. Zeng F, Parker K, Zhan Y, Miller M, Zhu MY. Upregulated DNA Damage-Linked Biomarkers in Parkinson's Disease Model Mice. ASN neuro. 2023. [DOI:10.1177/17590914231152099]
21. Fernández-Espejo, E, Fonseca FR, Gavito AL, Córdoba-Fernández A, Chacón J,de Pablos AM. Myeloperoxidase and Advanced Oxidation Protein Products in the Cerebrospinal Fluid in Women and Men with Parkinson's Disease. Antioxidants. 2022. 11(6):1088. [DOI:10.3390/antiox11061088]
22. Riederer R, Berg D, Casadei N, Cheng F, Classen J, Dresel CH, et al. α-Synuclein in Parkinson's disease: causal or bystander? Journal of neural transmission. 2019. 126:815-840. [DOI:10.1007/s00702-019-02025-9]
23. Zhou, L., Homocysteine and Parkinson's disease. CNS Neuroscience & Therapeutics. 2023. [DOI:10.1111/cns.14420]
24. Thao, D.T.P., Ubiquitin Carboxyl-Terminal Hydrolase L1 in Parkinson's. Ubiquitin Proteasome System: Current Insights into Mechanism Cellular Regulation and Disease. 2019. 105.
25. Mondello S, Constantinescu R, Zetterberg H, Andreasson U, Holmberg B, Jeromin‏ A. CSF α-synuclein and UCH-L1 levels in Parkinson's disease and atypical parkinsonian disorders. Parkinsonism & related disorders, 2014. 20(4): 382-387. [DOI:10.1016/j.parkreldis.2014.01.011]
26. Siderowf A, Xie SX, Hurtig H, Weintraub D, Duda J, Chen-Plotkin A, et al., CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010. 75(12):1055-1061. [DOI:10.1212/WNL.0b013e3181f39a78]
27. Bernhard FP, Heinzel S, Binder G, Weber K, Apel A, Roeben B, Deuschle Ch et al. Insulin-like growth factor 1 (IGF-1) in Parkinson's disease: potential as trait-, progression-and prediction marker and confounding factors. PLoS One. 2016; 11(3):150552. [DOI:10.1371/journal.pone.0150552]
28. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Movement disorders. 2015;30(12): 1591-1601. [DOI:10.1002/mds.26424]
29. Hansson O, Shorena J, Hall S, Magdalinou N, Andrew L, Andreasson U, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology, 2017; 88(10): 930-937. [DOI:10.1212/WNL.0000000000003680]
30. Ramaswamy P, Yadav R, Pal PK, Christopher R. Clinical application of circulating microRNAs in Parkinson's disease: The challenges and opportunities as diagnostic biomarker. Annals of Indian Academy of Neurology. 2020. 23(1):84. [DOI:10.4103/aian.AIAN_440_19]
31. Alrafiah A, Al-Ofi E, Talib Obaid M, Alsomali N et al., Assessment of the levels of level of biomarkers of bone matrix glycoproteins and inflammatory cytokines from Saudi Parkinson patients. BioMed research international. 2019. [DOI:10.1155/2019/2690205]
32. Whiteaker, J.R., A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nature biotechnology. 2011;29(7):625-634. [DOI:10.1038/nbt.1900]
33. Turner, M.R. Biomarkers in amyotrophic lateral sclerosis. The Lancet Neurology. 2009; 8(1) 94-109. [DOI:10.1016/S1474-4422(08)70293-X]
34. Sun, J.Blood biomarkers and prognosis of amyotrophic lateral sclerosis. European Journal of Neurology. 2020; 27(11):2125-2133. [DOI:10.1111/ene.14409]
35. Verde, F., M. Otto, V. Silani, Neurofilament light chain as biomarker for amyotrophic lateral sclerosis and frontotemporal dementia. Frontiers in neuroscience. 2021;15:679199. [DOI:10.3389/fnins.2021.679199]
36. Staats, K.A. Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Molecular Neurodegeneration. 2022; 17(1):11. [DOI:10.1186/s13024-022-00515-1]
37. Mahmoodkhani, M. Pregestational stress attenuated fertility rate in dams and increased seizure susceptibility in offspring. Epilepsy & Behavior.2018. 79:174-179. [DOI:10.1016/j.yebeh.2017.12.016]
38. Enright, N., M. Simonato, D.C. Henshall, Discovery and validation of blood micro RNA s as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open. 2018; 3(4):427-436. [DOI:10.1002/epi4.12275]
39. Raoof, R. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Scientific reports. 2017; 7(1):3328. [DOI:10.1038/s41598-017-02969-6]
40. Pitkänen, A., Therapeutic approaches to epileptogenesis-hope on the horizon. Epilepsia. 2010; 51:2-17. [DOI:10.1111/j.1528-1167.2010.02602.x]
41. Kobylarek, D. Advances in the potential biomarkers of epilepsy. Frontiers in neurology. 2019; 10:685. [DOI:10.3389/fneur.2019.00685]
42. Joslyn, C. Is age of onset associated with severity, prognosis, and clinical features in bipolar disorder? A meta‐analytic review. Bipolar disorders. 2016;18(5): 389-403. [DOI:10.1111/bdi.12419]
43. Cao, B. Hippocampal volume and verbal memory performance in late-stage bipolar disorder. Journal of psychiatric research. 2016; 73:102-107. [DOI:10.1016/j.jpsychires.2015.12.012]
44. Kato, T., Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and clinical neurosciences. 2019;73(9):526-540. [DOI:10.1111/pcn.12852]
45. Nurnberger, J.I. Identification of pathways for bipolar disorder: a meta-analysis. JAMA psychiatry. 2014;71(6):657-664. [DOI:10.1001/jamapsychiatry.2014.176]
46. Lin, L. Analysis of blood mature BDNF and proBDNF in mood disorders with specific ELISA assays. Journal of Psychiatric Research. 2021;133:166-173. [DOI:10.1016/j.jpsychires.2020.12.021]
47. Fernandes, B.S. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC medicine. 2015;13:1-22. [DOI:10.1186/s12916-015-0529-7]
48. Rosa, A. Altered plasma glutathione levels in bipolar disorder indicates higher oxidative stress; a possible risk factor for illness onset despite normal brain-derived neurotrophic factor (BDNF) levels. Psychological medicine. 2014;44(11):2409-2418. [DOI:10.1017/S0033291714000014]
49. Yu, J.-T. Evidence-based prevention of Alzheimer's disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. Journal of Neurology, Neurosurgery & Psychiatry. 2020; 91(11):1201-1209. [DOI:10.1136/jnnp-2019-321913]
50. Xu, H. Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid β-protein oligomers. Journal of Neuroscience. 2016; 36(35): 9041-56. [DOI:10.1523/JNEUROSCI.1023-16.2016]
51. Gendron, T.F. L. Petrucelli, The role of tau in neurodegeneration. Molecular neurodegeneration. 2009. 4:1-19. [DOI:10.1186/1750-1326-4-13]
52. Sperling, R.A. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimer's & Dementia, 2011;7(4):367-85. [DOI:10.1016/j.jalz.2011.05.2351]
53. Leuzy, A. Biomarker-based prediction of longitudinal tau positron emission tomography in Alzheimer disease. JAMA neurology. 2022;79(2):149-158. [DOI:10.1001/jamaneurol.2021.4654]
54. Habibi, S., A. Abdi, and S. Fazelifar, The Effect of Aerobic Training and Resveratrol on Ferroptosis in a Rat Model of Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam: p. 1-11. [DOI:10.61186/shefa.11.4.1]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4657