[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 12, Issue 2 (Spring 2024) ::
Shefaye Khatam 2024, 12(2): 74-86 Back to browse issues page
Protective Effects of Saffron in Nervous System Diseases: A Narrative Review
Mahan Kajkolah , Aida Nahumi , Ashkan Asgari , Abolfazl Bayrami , Asad alah Asadi , Arash Abdolmaleki *
Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran , Abdolmalekiarash1364@gmail.com
Abstract:   (819 Views)
Introduction: Saffron (Crocus sativus L.) is a spice that is used worldwide as a coloring and flavoring agent. Saffron is also a source of numerous bioactive compounds with many health benefits. The rising prevalence of neurological and psychological disorders, such as anxiety, depression, Alzheimer's disease, and Parkinson's disease, has become a significant concern in recent years. Evidence indicates that oxidative stress and neuroinflammation play a role in the induction and development of these disorders. Although researchers have spent considerable time studying these diseases, there are still limited drugs to treat them. This article reviews the medicinal properties of saffron and its compounds focusing on their neuroprotective and antioxidant effects. Furthermore, we explore their clinical applications in the treatment of nervous system diseases. Conclusion: Saffron shows beneficial effects against a wide range of human neurological disorders due to its antioxidant and anti-depressant properties. Compounds found in saffron hold promise as potential therapeutic agents for the treatment of certain brain diseases.
 
Keywords: Neurodegenerative Diseases, Inflammation, Antioxidants, Oxidative Stress, Neuroprotective Agents
Full-Text [PDF 752 kb]   (218 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Khazdair MR, Anaeigoudari A, Hashemzehi M, Mohebbati R. Neuroprotective potency of some spice herbs, a literature review. Journal of traditional and complementary medicine. 2019;9(2):98-105. [DOI:10.1016/j.jtcme.2018.01.002]
2. Kothari D, Thakur R, Kumar R. Saffron (Crocus sativus L.): Gold of the spices-A comprehensive review. Horticulture, Environment, and Biotechnology. 2021;62(5):661-77. [DOI:10.1007/s13580-021-00349-8]
3. Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia. 2005;76(7-8):722-4. [DOI:10.1016/j.fitote.2005.07.008]
4. Hosseinzadeh H, Karimi G, Niapoor M. Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. Journal of Medicinal Plants. 2004;3(11):48-58. [DOI:10.17660/ActaHortic.2004.650.54]
5. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European journal of pharmacology. 2010;648(1-3):110-6. [DOI:10.1016/j.ejphar.2010.09.003]
6. Nair S, Pannikar B, Panikkar K. Antitumour activity of saffron (Crocus sativus). Cancer letters. 1991;57(2):109-14. [DOI:10.1016/0304-3835(91)90203-T]
7. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytotherapy Research. 2012; 26(3): 381-6. [DOI:10.1002/ptr.3566]
8. Omidkhoda SF, Hosseinzadeh H. Saffron and its active ingredients against human disorders: A literature review on existing clinical evidence. Iranian Journal of Basic Medical Sciences. 2022;25(8):913.
9. Kumar V, Bhat Z, Kumar D, Khan N, Chashoo I, Shah M. Pharmacological profile of Crocus sativus-a comprehensive review. Pharmacologyonline. 2011;3:799-811.
10. Boussabbeh M, Prola A, Ben Salem I, Guilbert A, Bacha H, Lemaire C, Abis‐Essefi S. Crocin and quercetin prevent PAT‐induced apoptosis in mammalian cells: Involvement of ROS‐mediated ER stress pathway. Environmental Toxicology. 2016;31(12):1851-8. [DOI:10.1002/tox.22185]
11. Rahim VB, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacological reports. 2019;71(6):1228-34. [DOI:10.1016/j.pharep.2019.07.007]
12. He S-Y, Qian Z-Y, Tang F-T, Wen N, Xu G-L, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life sciences. 2005;77(8):907-21. [DOI:10.1016/j.lfs.2005.02.006]
13. Yosri H, Elkashef WF, Said E, Gameil NM. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. International immunopharmacology. 2017;50:305-12. [DOI:10.1016/j.intimp.2017.07.012]
14. Xi L, Qian Z, Shen X, Wen N, Zhang Y. Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta medica. 2005;71(10):917-22. [DOI:10.1055/s-2005-871248]
15. Purushothuman S, Nandasena C, Peoples CL, El Massri N, Johnstone DM, Mitrofanis J, Stone J. Saffron pre-treatment offers neuroprotection to Nigral and retinal dopaminergic cells of MPTP-Treated mice. Journal of Parkinson's disease. 2013;3(1):77-83. [DOI:10.3233/JPD-130173]
16. Hosseinzadeh H, Motamedshariaty V, Hadizadeh F. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline. 2007; 2: 367-70.
17. Zhou Y, Xu Q, Shang J, Lu L, Chen G. Crocin inhibits the migration, invasion, and epithelial‐mesenchymal transition of gastric cancer cells via miR‐320/KLF5/HIF‐1α signaling. Journal of cellular physiology. 2019;234(10):17876-85. [DOI:10.1002/jcp.28418]
18. Seyed AM, Hosseinzadeh H, Ghaeni FA. Saffron (Crocus sativus L.) and crocin have memory enhancing effect after chronic cerebral hypoperfusion in rats. Clinical Biochemistry. 2011;13(44):S113. [DOI:10.1016/j.clinbiochem.2011.08.274]
19. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci. 2005;8(3):387-93.
20. Mansoori P, Akhondzadeh S, Raisi F, Ghaeli P, Jamshidi A, Nasehi A, et al. A randomized, double-blind, placebo-controlled study of safety of the adjunctive saffron on sexual dysfunction induced by a selective serotonin reuptake inhibitor. 2011.
21. Ramadan A, Soliman G, Mahmoud SS, Nofal SM, Abdel-Rahman RF. Evaluation of the safety and antioxidant activities of Crocus sativus and Propolis ethanolic extracts. Journal of Saudi Chemical Society. 2012;16(1):13-21. [DOI:10.1016/j.jscs.2010.10.012]
22. Bukhari SI, Manzoor M, Dhar M. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomedicine & Pharmacotherapy. 2018;98:733-45. [DOI:10.1016/j.biopha.2017.12.090]
23. Soeda S, Aritake K, Urade Y, Sato H, Shoyama Y. Neuroprotective activities of saffron and crocin. The benefits of natural products for neurodegenerative diseases. 2016; 275-92. [DOI:10.1007/978-3-319-28383-8_14]
24. El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, et al. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients. 2022;14(3):597. [DOI:10.3390/nu14030597]
25. Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytotherapy Research. 2022;36(1):98-111. [DOI:10.1002/ptr.7286]
26. Al-Snafi AE. The pharmacology of Crocus sativus-A review. IOSR Journal of Pharmacy. 2016;6(6):8-38.
27. Gresta F, Lombardo G, Siracusa L, Ruberto G. Saffron, an alternative crop for sustainable agricultural systems: a review. Sustainable agriculture. 2009:355-76. [DOI:10.1007/978-90-481-2666-8_23]
28. Christodoulou E, Kadoglou NP, Kostomitsopoulos N, Valsami G. Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology. 2015;67(12):1634-49. [DOI:10.1111/jphp.12456]
29. Nanda S, Madan K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review. Heliyon. 2021; (2) 7. [DOI:10.1016/j.heliyon.2021.e06117]
30. Hadavi R, Jafari SM, Katouzian I. Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. International Journal of Biological Macromolecules. 2020;164:4046-53. [DOI:10.1016/j.ijbiomac.2020.09.028]
31. Shajari MA, Moghaddam PR. Are the apocarotenoids content and colorimetric traits of saffron (Crocus sativus L.) affected by some post harvesting operations? Journal of Stored Products Research. 2022;97:101967. [DOI:10.1016/j.jspr.2022.101967]
32. Guijarro-Diez M, Castro-Puyana M, Crego AL, Marina ML. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food chemistry. 2017;228:403-10. [DOI:10.1016/j.foodchem.2017.02.015]
33. Armellini R, Peinado I, Asensio-Grau A, Pittia P, Scampicchio M, Heredia A, Andres A. In vitro starch digestibility and fate of crocins in pasta enriched with saffron extract. Food Chemistry. 2019;283:155-63. [DOI:10.1016/j.foodchem.2019.01.041]
34. Gani A, Jan R, Ashwar BA, ul Ashraf Z, Shah A, Gani A. Encapsulation of saffron and sea buckthorn bioactives: Its utilization for development of low glycemic baked product for growing diabetic population of the world. LWT. 2021;142:111035. [DOI:10.1016/j.lwt.2021.111035]
35. Garavand F, Rahaee S, Vahedikia N, Jafari SM. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology. 2019;89:26-44. [DOI:10.1016/j.tifs.2019.05.005]
36. Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry. 2007;100(3):1126-31. [DOI:10.1016/j.foodchem.2005.11.020]
37. Liu J, Chen N, Yang J, Yang B, Ouyang Z, Wu C, et al. An integrated approach combining HPLC, GC/MS, NIRS, and chemometrics for the geographical discrimination and commercial categorization of saffron. Food chemistry. 2018;253:284-92. [DOI:10.1016/j.foodchem.2018.01.140]
38. Bakshi RA, Sodhi NS, Wani IA, Khan ZS, Dhillon B, Gani A. Bioactive constituents of saffron plant: Extraction, encapsulation and their food and pharmaceutical applications. Applied Food Research. 2022;2(1):10007. [DOI:10.1016/j.afres.2022.100076]
39. Bathaie SZ, Farajzade A, Hoshyar R. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains. Biotechnic & Histochemistry. 2014;89(6):401-11. [DOI:10.3109/10520295.2014.890741]
40. Chen D, Xing B, Yi H, Li Y, Zheng B, Wang Y, Shao Q. Effects of different drying methods on appearance, microstructure, bioactive compounds and aroma compounds of saffron (Crocus sativus L.). LWT. 2020;120:108913. [DOI:10.1016/j.lwt.2019.108913]
41. Rocchi R, Mascini M, Sergi M, Compagnone D, Mastrocola D, Pittia P. Crocins pattern in saffron detected by UHPLC-MS/MS as marker of quality, process and traceability. Food chemistry. 2018;264:241-9. [DOI:10.1016/j.foodchem.2018.04.111]
42. Urbani E, Blasi F, Simonetti MS, Chiesi C, Cossignani L. Investigation on secondary metabolite content and antioxidant activity of commercial saffron powder. European Food Research and Technology. 2016;242:987-93. [DOI:10.1007/s00217-016-2687-z]
43. Reddy CN, Bharate SB, Vishwakarma RA, Bharate SS. Chemical analysis of saffron by HPLC based crocetin estimation. Journal of Pharmaceutical and Biomedical Analysis. 2020;181:113094. [DOI:10.1016/j.jpba.2020.113094]
44. Sarfarazi M, Rajabzadeh Q, Tavakoli R, Ibrahim SA, Jafari SM. Ultrasound-assisted extraction of saffron bioactive compounds; separation of crocins, picrocrocin, and safranal optimized by artificial bee colony. Ultrasonics Sonochemistry. 2022;86:105971. [DOI:10.1016/j.ultsonch.2022.105971]
45. Catinella G, Borgonovo G, Dallavalle S, Contente ML, Pinto A. From saffron residues to natural safranal: Valorization of waste through a β-glucosidase. Food and Bioproducts Processing. 2022;131:144-8. [DOI:10.1016/j.fbp.2021.11.002]
46. Guclu G, Kelebek H, Selli S. Saffron (Crocus sativus L.): Its aroma and key odorants. Saffron: Elsevier; 2020. p. 69-82. [DOI:10.1016/B978-0-12-818462-2.00006-1]
47. Melnyk JP, Wang S, Marcone MF. Chemical and biological properties of the world's most expensive spice: Saffron. Food research international. 2010;43(8):1981-9. [DOI:10.1016/j.foodres.2010.07.033]
48. Pitsikas N. The effect of Crocus sativus L. and its constituents on memory: basic studies and clinical applications. Evidence-based Complementary and Alternative Medicine, 2015. [DOI:10.1155/2015/926284]
49. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nature reviews Disease primers. 2021;7(1):33. [DOI:10.1038/s41572-021-00269-y]
50. Zandi N, Pazoki B, Roudsari NM, Lashgari N-A, Jamshidi V, Momtaz S, et al. Prospects of saffron and its derivatives in Alzheimer's disease. Archives of Iranian Medicine. 2021;24(3):233-52. [DOI:10.34172/aim.2021.35]
51. D'Onofrio G, Nabavi SM, Sancarlo D, Greco A, Pieretti S. Crocus sativus L.(Saffron) in Alzheimer's disease treatment: Bioactive effects on cognitive impairment. Current Neuropharmacology. 2021;19(9):1606. [DOI:10.2174/1570159X19666210113144703]
52. Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer's disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxidative medicine and cellular longevity. 2016;2016. [DOI:10.1155/2016/7361613]
53. Akhondzadeh S, Shafiee Sabet M, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer's disease. Psychopharmacology. 2010;207:637-43. [DOI:10.1007/s00213-009-1706-1]
54. Adalier N, Parker H. Vitamin E, turmeric and saffron in treatment of Alzheimer's disease. Antioxidants. 2016;5(4):40. [DOI:10.3390/antiox5040040]
55. Ghaffari S, Hatami H, Dehghan G. Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. Research in Pharmaceutical Sciences. 2015;10(3):222.
56. Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer's disease in male rats. Iranian biomedical journal. 2010;14(1-2):59.
57. Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant properties of Crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer's and Parkinson's disease. Current Neuropharmacology. 2019;17(4):377-402. [DOI:10.2174/1570159X16666180321095705]
58. Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: Therapeutic effects of Saffron. Biomedicine & Pharmacotherapy. 2021;133:110995. [DOI:10.1016/j.biopha.2020.110995]
59. Inoue E, Suzuki T, Shimizu Y, Sudo K, Kawasaki H, Ishida N. Saffron ameliorated motor symptoms, short life span and retinal degeneration in Parkinson's disease fly models. Gene. 2021;799:145811. [DOI:10.1016/j.gene.2021.145811]
60. Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Höllerhage M, et al. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell death & disease. 2019;10(11):865. [DOI:10.1038/s41419-019-2091-2]
61. Cilia R, Akpalu A, Sarfo FS, Cham M, Amboni M, Cereda E, et al. The modern pre-levodopa era of Parkinson's disease: insights into motor complications from sub-Saharan Africa. Brain. 2014;137(10):2731-42. [DOI:10.1093/brain/awu195]
62. Bhargava V. Medicinal uses and pharmacological properties of Crocus sativus Linn (Saffron). Int J Pharm Pharm Sci. 2011; (3) 3.
63. Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Cellular & molecular biology letters. 2013;18:328-39. [DOI:10.2478/s11658-013-0092-1]
64. Giráldez-Pérez RM, Antolín-Vallespín M, Muñoz MD, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson's disease. Acta neuropathologica communications. 2014;2:1-17. [DOI:10.1186/s40478-014-0176-9]
65. Inoue E, Shimizu Y, Masui R, Hayakawa T, Tsubonoya T, Hori S, Sudoh K. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. Journal of natural medicines. 2018;72:274-9. [DOI:10.1007/s11418-017-1150-1]
66. Chung H-J, Islam MS, Rahman MM, Hong S-T. Neuroprotective function of Omi to α-synuclein-induced neurotoxicity. Neurobiology of Disease. 2020; 104706. [DOI:10.1016/j.nbd.2019.104706]
67. Haeri P, Mohammadipour A, Heidari Z, Ebrahimzadeh-Bideskan A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson's disease model of mice. Anatomical science international. 2019;94:119-27. [DOI:10.1007/s12565-018-0457-7]
68. Salama RM, Abdel-Latif GA, Abbas SS, Hekmat M, Schaalan MF. Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology. 2020; 107900. [DOI:10.1016/j.neuropharm.2019.107900]
69. Bian Y, Zhao C, Lee SM-Y. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside. Frontiers in Pharmacology. 2020:1602. [DOI:10.3389/fphar.2020.579052]
70. Siddiqui MJ, Saleh MS, Basharuddin SNB, Zamri SHB, bin Mohd Najib MH, bin Che Ibrahim MZ, et al. Saffron (Crocus sativus L.): As an antidepressant. Journal of pharmacy & bioallied sciences. 2018;10(4):173. [DOI:10.4103/JPBS.JPBS_83_18]
71. Wang Y, Han T, Zhu Y, Zheng C-J, Ming Q-L, Rahman K, Qin L-P. Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. Journal of natural medicines. 2010;64:24-30. [DOI:10.1007/s11418-009-0360-6]
72. Amin B, Nakhsaz A, Hosseinzadeh H. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice. Avicenna journal of phytomedicine. 2015;5(5):458.
73. Moshiri E, Basti AA, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S. Crocus sativus L.(petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine. 2006;13(9-10):607-11. [DOI:10.1016/j.phymed.2006.08.006]
74. Sahraian A, Jelodar S, Javid Z, Mowla A, Ahmadzadeh L. Study the effects of saffron on depression and lipid profiles: A double blind comparative study. Asian journal of psychiatry. 2016; 22: 174-6. [DOI:10.1016/j.ajp.2015.10.012]
75. Tabeshpour J, Sobhani F, Sadjadi SA, Hosseinzadeh H, Mohajeri SA, Rajabi O, et al. A double-blind, randomized, placebo-controlled trial of saffron stigma (Crocus sativus L.) in mothers suffering from mild-to-moderate postpartum depression. Phytomedicine. 2017;36:145-52. [DOI:10.1016/j.phymed.2017.10.005]
76. Noorbala A, Akhondzadeh S, Tahmacebi-Pour N, Jamshidi A. Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: a double-blind, randomized pilot trial. Journal of ethnopharmacology. 2005; 97(2): 281-4. [DOI:10.1016/j.jep.2004.11.004]
77. Basti AA, Moshiri E, Noorbala A-A, Jamshidi A-H, Abbasi SH, Akhondzadeh S. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: a pilot double-blind randomized trial. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2007; 31(2): 439-42. [DOI:10.1016/j.pnpbp.2006.11.010]
78. Shahmansouri N, Farokhnia M, Abbasi S-H, Kassaian SE, Tafti A-AN, Gougol A, et al. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. Journal of Affective disorders. 2014; 155: 216-22. [DOI:10.1016/j.jad.2013.11.003]
79. Hosseinzadeh H, Khosravan V. Anticonvulsant effects of aqueous ana ethanolic extracts of Crocus sativus L stigmas in mice. 2002.
80. Samarghandian S, Farkhondeh T. Saffron and neurological disorders. Saffron: Elsevier; 2020. P. 103-16. [DOI:10.1016/B978-0-12-818462-2.00009-7]
81. Sunanda B, Rammohan B, Amitabh K, Kudagi B. The effective study of aqueous extract of Crocus sativus Linn. in chemical induced convulsants in rats. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS). 2014; 3(8): 1175-82.
82. Hosseinzadeh H, Sadeghnia H. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine. 2007; 14(4): 256-62. [DOI:10.1016/j.phymed.2006.03.007]
83. Tamaddonfard E, Gooshchi NH, Seiednejad-Yamchi S. Central effect of crocin on penicillin-induced epileptiform activity in rats. Pharmacological Reports. 2012; 64(1): 94-101. [DOI:10.1016/S1734-1140(12)70735-1]
84. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. Journal of neurology. 2004; 251: 261-8. [DOI:10.1007/s00415-004-0348-9]
85. Saleem A, Akhtar MF. Alternative therapy of psychosis: Potential phytochemicals and drug targets in the management of schizophrenia. Frontiers in pharmacology. 2022;13:895668. [DOI:10.3389/fphar.2022.895668]
86. Pitsikas N. Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules. 2016;21(3):303. [DOI:10.3390/molecules21030303]
87. Mousavi B, Bathaie SZ, Fadai F, Ashtari Z, Farhang S, Hashempour S, et al. Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna journal of phytomedicin. 2015; (5)5: 413.
88. Ashtiani AR, Seied Amirhossein L, Jadidi A, Ghasami K, Khanmohamadi Hezave A, Aghae Pour SM, et al. The effect of novel simple saffron syrup on fatigue reduction in patients with multiple sclerosis. Journal of basic and clinical physiology and pharmacology. 2020; 31(6): 20200063. [DOI:10.1515/jbcpp-2020-0063]
89. Moher D, Pelletier D. A temporal framework for understanding the effect of stressful life event on inflammation in patient with multiple sclerosis. Brain Behav Immun. 2005;20(1):27-36. [DOI:10.1016/j.bbi.2005.03.011]
90. Ashtari F, Fatehi F, Shaygannejad V, Chitsaz A. Does amantadine have favourable effects on fatigue in Persian patients suffering from multiple sclerosis. Neurol Neurochir Pol. 2009;43(5):428-32.
91. Nazdik MK, Taheri M, Sajjadi E, Arsang-Jang S, Koohpar ZK, Inoko H, Sayad A. Increased expression ratio of matrix metalloproteinase-9 (MMP9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) RNA levels in Iranian multiple sclerosis patients. Human Antibodies. 2016;24(3-4):65-70. [DOI:10.3233/HAB-160296]
92. Sakha FG, Saeen AA, Moazzeni SM, Etesam F, Vaezi G. A randomized, triple-blind placebo-controlled trial to determine the effect of saffron on the serum levels of MMP-9 and TIMP-1 in patients with multiple sclerosis. Iranian Journal of Allergy, Asthma and Immunology. 2020:297-304.
93. Ochiai T, Shimeno H, Mishima K-i, Iwasaki K, Fujiwara M, Tanaka H, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta (BBA)-General Subjects. 2007;1770(4):578-84. [DOI:10.1016/j.bbagen.2006.11.012]
94. Huang A, Jia L. Crocin enhances hypothermia therapy in hypoxic ischemia-induced brain injury in mice. Acta Neurologica Belgica. 2021;121:429-36. [DOI:10.1007/s13760-019-01198-0]
95. Farjah GH, Salehi S, Ansari MH, Pourheidar B. Protective effect of Crocus sativus L.(Saffron) extract on spinal cord ischemia-reperfusion injury in rats. Iranian journal of basic medical sciences. 2017;20(3):334.
96. Chen L, Qi Y, Yang X. Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic research. (2015) 54 (3): 157-68. [DOI:10.1159/000439026]
97. Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 2014;23(1):106-13. [DOI:10.1016/j.jstrokecerebrovasdis.2012.10.008]
98. Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathologica. 2017;55(3):206-13. [DOI:10.5114/fn.2017.70485]
99. Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology. 2009;7(1):65-74. [DOI:10.2174/157015909787602823]
100. karimi shayan T, Asadi A, Abdolmaleki A. New Drugs and their Mechanism in the Treatment of Epilepsy. Shefaye Khatam 2022; 10 (2) :104-110. [DOI:10.61186/shefa.10.2.104]
101. Yang W, Qiu X, Wu Q, Chang F, Zhou T, Zhou M, Pei J. Active constituents of saffron (Crocus sativus L.) and their prospects in treating neurodegenerative diseases. Experimental and Therapeutic Medicine. 2023;25(5):1-14. [DOI:10.3892/etm.2023.11934]
102. Azizishalbaf S, Asadi A, Abdolmaleki A. Analysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes. Shefaye Khatam 2019; 7 (3) :91-101 [DOI:10.29252/shefa.7.3.91]
103. Osaki LH, Gama P. MAPKs and signal transduction in the control of gastrointestinal epithelial cell proliferation and differentiation. International journal of molecular sciences. 2013;14(5):10143-61. [DOI:10.3390/ijms140510143]
104. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010;1802(4):396-405. [DOI:10.1016/j.bbadis.2009.12.009]
105. Rafieipour F, Hadipour E, Emami SA, Asili J, Tayarani-Najaran Z. Safranal protects against beta-amyloid peptide-induced cell toxicity in PC12 cells via MAPK and PI3 K pathways. Metabolic Brain Disease. 2019;34:165-72. [DOI:10.1007/s11011-018-0329-9]
106. Koulakiotis NS, Purhonen P, Gikas E, Hebert H, Tsarbopoulos A. Crocus-derived compounds alter the aggregation pathway of Alzheimer's Disease-associated beta amyloid protein. Scientific Reports. 2020;10(1):18150. [DOI:10.1038/s41598-020-74770-x]
107. Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiological reports. 2023;11(15):e15785. [DOI:10.14814/phy2.15785]
108. Abdolmaleki A, Asadi A, Taghizadeh Momen L, Parsi Pilerood S. The Role of Neural Tissue Engineering in the Repair of Nerve Lesions. Shefaye Khatam 2020; 8 (3): 80-96. [DOI:10.29252/shefa.8.3.80]
109. khoshnazar M, Farhadi Maghadam B. Neuroprotective Effect of Alpha-Pinene on Focal Cerebral Ischemia in Rats. Shefaye Khatam 2022; 10 (3): 37-47. [DOI:10.52547/shefa.10.3.37]
110. Alavian F, Alavian K, Ghiasvand S, Rezaeian L. Protective Effects of Cherry Extract on Malondialdehyde Levels, Catalase Activity, and Edema Induced by Middle Cerebral Artery Occlusion in a Rat Stroke Model. Shefaye Khatam 2020; 8 (3): 1-9. [DOI:10.29252/shefa.8.3.1]
111. Halliwell B. Oxidative stress and neurodegeneration: where are we now? Journal of neurochemistry. 2006;97(6):1634-58. [DOI:10.1111/j.1471-4159.2006.03907.x]
112. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. Journal of agricultural and food chemistry. 2006;54(23):8762-8. [DOI:10.1021/jf061932a]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kajkolah M, Nahumi A, Asgari A, Bayrami A, Asadi A A, Abdolmaleki A. Protective Effects of Saffron in Nervous System Diseases: A Narrative Review. Shefaye Khatam 2024; 12 (2) :74-86
URL: http://shefayekhatam.ir/article-1-2460-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (Spring 2024) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 47 queries by YEKTAWEB 4660