[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 12، شماره 2 - ( بهار 1403 ) ::
دوره 12 شماره 2 صفحات 20-10 برگشت به فهرست نسخه ها
مدل‌سازی رفتار بصری مصرف کنندگان (CVB) با بکارگیری هوش مصنوعی
داود ساده ، کامبیز حیدرزاده*
گروه مدیریت بازرگانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران ، kambizheidarzadeh@yahoo.com
چکیده:   (1273 مشاهده)
مقدمه: هدف پژوهش مدل‌سازی رفتار بصری از طریق روش‌های یادگیری ماشین می‌باشد، تجزیه و تحلیل داده‌های بصری به‌منظور افزایش تشخیص و دقت تصمیم‌گیری یکی از جنبه‌های مهم این تحقیق است. مواد و روش‌ها: روش تحقیق از نوع اکتشافی– آزمایشگاهی می‌باشد که با بکارگیری ردیاب چشم صحنه GAZEPOINT داده‌های بصری استخراج شده است و به وسیله الگوریتم شبکه‌های عصبی پرسپترون چندلایه در نرم‌افزار پایتون تحلیل و مدل‌سازی گردیده است. جامعه آماری تشکیل شده است از مصرف کنندگان یک برند کیف با مواد الیاف طبیعی که در قالب سه تصویر به 30 نفر زن نشان داده شده است. تسک‌ها به منظور انتخاب/ انتخاب‌ها و عدم انتخاب/ عدم انتخاب‌ها طراحی شده است. یافته‌ها: بر اساس ماتریس درهم ریختگی، شاخص کاپا و معیارهای پوشش، نتایج نشان می‌دهد که این مدل پیش‌بینی قوی را برای رفتار بصری کلی در انواع مختلف تصاویر ارائه می‌دهد. بر مبنای ماتریس درهم ریختگی، شاخص کاپا (0/34=k)، و پوشش (66=R)، نتایج نشان می‌دهد که مدل‌سازی رفتار بصری به طور کلی در دسته‌های مختلف تصویر مؤثر است، با دقت کلی 66/8 درصد. این مدل دقت بالاتری را هنگام پیش‌بینی رفتار بصری برای انواع تصاویر خاص ارائه می‌دهد، که نشان می‌دهد عملکرد مدل زمانی که برای دسته‌های تصویری منفرد تنظیم شود، بهبود می‌یابد (78 ،75 ،68 K: 0/35، 0/53، 0/46، R: Accuracy: 67/8، 76/9، 73). نتیجه‌گیری: مدل‌سازی رفتار بصری با پیش‌بینی انتخاب‌ها و عدم انتخاب‌های مصرف‌کننده، رویکردی فعالانه برای محققان علوم رفتاری و کارشناسان طراحی محصول فراهم می‌کند. این توانایی دقت مطالعات را افزایش می‌دهد و امکان تصمیم‌گیری آگاهانه‌تری را فراهم می‌کند.
 
واژه‌های کلیدی: فناوری ردیابی چشم، گیجی، اندیکاتورها و معرف‌ها
متن کامل [PDF 1178 kb]   (634 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تحقیقات پایه در علوم اعصاب
فهرست منابع
1. MacInnis DJ, Folkes VS. The disciplinary status of consumer behavior: A sociology of science perspective on key controversies. Journal of consumer research. 2010 Apr;36(6):899-914. [DOI:10.1086/644610]
2. Trudel R. Sustainable consumer behavior. Consumer psychology review. 2019 Jan;2(1):85-96. [DOI:10.1002/arcp.1045]
3. Arndt J. Paradigms in consumer research: a review of perspectives and aapproaches. European Journal of Marketing. 1986 Aug 1;20(8):23-40. [DOI:10.1108/EUM0000000004660]
4. Battalio RC, Fisher Jr EB, Kagel JH, Basmann RL, Winkler RC, Krasner L. An experimental investigation of consumer behavior in a controlled environment. Journal of Consumer Research. 1974 Sep 1;1(2):52-60. [DOI:10.1086/208591]
5. Belk RW, Scott L, Askegaard S, editors. Research in consumer behavior. Emerald Group Publishing; 2012 Dec 20. [DOI:10.1108/S0885-2111(2012)14]
6. Hameed A, Waqas A, Aslam MN, Bilal M, Umair M. Impact of TV advertisement on children buying behavior. International journal of humanities and social science. 2014 Jan 4;4(2):246-61.
7. Mothersbaugh DL, Hawkins DI. Consumer behavior: Building marketing strategy. McGraw-Hill; 2016.
8. Howard JA, Sheth JN. The theory of buyer behavior, New-York, John W iley & Sons. 1969.
9. Robertson TS, Kassarjian HH. Handbook of consumer behavior. (No Title). 1991.
10. Solomon MR. Consumer behavior: Buying, having, and being. Pearson; 2020.
11. Williams BC, Plouffe CR. Assessing the evolution of sales knowledge: A 20-year content analysis. Industrial Marketing Management. 2007 May 1;36(4):408-19. [DOI:10.1016/j.indmarman.2005.11.003]
12. Gajjar NB. Factors affecting consumer behavior. International Journal of Research in Humanities and Social Sciences. 2013 Apr;1(2):10-5.
13. Hoyer WD, Stokburger-Sauer NE. The role of aesthetic taste in consumer behavior. Journal of the Academy of Marketing Science. 2012 Jan; 40: 167-80. [DOI:10.1007/s11747-011-0269-y]
14. Moschis GP. Life course perspectives on consumer behavior. Journal of the Academy of Marketing Science. 2007 Jun; 35: 295-307. [DOI:10.1007/s11747-007-0027-3]
15. Cohen JB. Attitude, affect, and consumer behavior. Affect and social behavior. 1990 Mar 30:152-206.
16. Olson JC. Consumer Behavior and Marketing Strategy: J. Paul Peter, Jerry C. Olson. Mcgraw-hill; 2005.
17. Moschis GP. Stress and consumer behavior. Journal of the Academy of Marketing Science. 2007 Sep; 35: 430-44. [DOI:10.1007/s11747-007-0035-3]
18. Engel JF, Kollat DT, Blackwell RD. Consumer behaviour 3rd ed. Holt, Rhinehart & Winston, New York, NY. 1978.
19. Jisana TK. Consumer behaviour models: an overview. Sai Om Journal of Commerce & Management. 2014 May;1(5):34-43.
20. Brown A, Deaton A. Surveys in applied economics: models of consumer behaviour. The Economic Journal. 1972 Dec 1;82(328):1145-236. [DOI:10.2307/2231303]
21. Gabbott M, Hogg G. Consumer behaviour and services: a review. Journal of marketing management. 1994 May 1;10(4):311-24. [DOI:10.1080/0267257X.1994.9964277]
22. Hubert M, Kenning P. A current overview of consumer neuroscience. Journal of Consumer Behaviour: An International Research Review. 2008 Jul;7(4‐5):272-92. [DOI:10.1002/cb.251]
23. Plassmann H, Venkatraman V, Huettel S, Yoon C. Consumer neuroscience: applications, challenges, and possible solutions. Journal of marketing research. 2015 Aug;52(4):427-35. [DOI:10.1509/jmr.14.0048]
24. Smidts A, Hsu M, Sanfey AG, Boksem MA, Ebstein RB, Huettel SA, Kable JW, Karmarkar UR, Kitayama S, Knutson B, Liberzon I. Advancing consumer neuroscience. Marketing Letters. 2014 Sep; 25: 257-67. [DOI:10.1007/s11002-014-9306-1]
25. Kenning P, Hubert M, Linzmajer M. Consumer neuroscience. Ein transdisziplinäres Lehrbuch. 2014;1. [DOI:10.17433/978-3-17-025865-5]
26. Javor A, Koller M, Lee N, Chamberlain L, Ransmayr G. Neuromarketing and consumer neuroscience: contributions to neurology. BMC neurology. 2013 Dec; 13: 1-2. [DOI:10.1186/1471-2377-13-13]
27. Peighambari K, Sattari S, Kordestani A, Oghazi P. Consumer behavior research: A synthesis of the recent literature. Sage Open. 2016 Apr 20;6(2):2158244016645638. [DOI:10.1177/2158244016645638]
28. Gbadamosi A. Consumer Behaviour and Digital Transformation. Taylor & Francis; 2024 Mar 11. [DOI:10.4324/9781003242031]
29. Ruvio A, Iacobucci D. Consumer Behavior. John Wiley & Sons; 2023 Feb 1.
30. Krishna A. An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. Journal of consumer psychology. 2012 Jul 1;22(3):332-51. [DOI:10.1016/j.jcps.2011.08.003]
31. Krishna A, Schwarz N. Sensory marketing, embodiment, and grounded cognition: A review and introduction. Journal of consumer psychology. 2014 Apr 1;24(2):159-68. [DOI:10.1016/j.jcps.2013.12.006]
32. Petit O, Velasco C, Spence C. Digital sensory marketing: Integrating new technologies into multisensory online experience. Journal of Interactive Marketing. 2019 Feb;45(1):42-61. [DOI:10.1016/j.intmar.2018.07.004]
33. Wedel M, Pieters R. Eye tracking for visual marketing. Foundations and Trends® in Marketing. 2008 Aug 18;1(4):231-320. [DOI:10.1561/1700000011]
34. Haber RN, Hershenson M. The psychology of visual perception. Holt, Rinehart & Winston; 1973.
35. Shepherd SV. Following gaze: gaze-following behavior as a window into social cognition. Frontiers in integrative neuroscience. 2010 Mar 19; 4: 5. [DOI:10.3389/fnint.2010.00005]
36. Ando S. Perception of gaze direction based on luminance ratio. Perception. 2004 Oct;33(10):1173-84. [DOI:10.1068/p5297]
37. Sarsam SM, Al-Samarraie H, Alzahrani AI. Influence of personality traits on users' viewing behaviour. Journal of Information Science. 2023 Feb;49(1):233-47. [DOI:10.1177/0165551521998051]
38. Rauthmann JF, Seubert CT, Sachse P, Furtner MR. Eyes as windows to the soul: Gazing behavior is related to personality. Journal of Research in Personality. 2012 Apr 1;46(2):147-56. [DOI:10.1016/j.jrp.2011.12.010]
39. Lupyan G, Rahman RA, Boroditsky L, Clark A. Effects of language on visual perception. Trends in cognitive sciences. 2020 Nov 1;24(11):930-44. [DOI:10.1016/j.tics.2020.08.005]
40. Gregory RL. Eye and brain: The psychology of seeing. Princeton university press; 2015 Feb 17. [DOI:10.2307/j.ctvc77h66]
41. Baron-Cohen S. Mindblindness: An essay on autism and theory of mind. MIT press; 1997 Jan 22.
42. Kleinke CL. Gaze and eye contact: a research review. Psychological bulletin. 1986 Jul;100(1):78. [DOI:10.1037//0033-2909.100.1.78]
43. Kobayashi H, Kohshima S. Unique morphology of the human eye. Nature. 1997 Jun 19;387(6635):767-8. [DOI:10.1038/42842]
44. Uono S, Hietanen JK. Eye contact perception in the west and east: A cross-cultural study. Plos one. 2015 Feb 25;10(2): e0118094. [DOI:10.1371/journal.pone.0118094]
45. Poole A, Ball LJ. Eye tracking in HCI and usability research. InEncyclopedia of human computer interaction 2006 (pp. 211-219). IGI global. [DOI:10.4018/978-1-59140-562-7.ch034]
46. Ahsan Z, Obaidellah U. Visual behavior on problem comprehension among novice programmers with prior knowledge. Procedia Computer Science. 2021 Jan 1; 192: 2347-54. [DOI:10.1016/j.procs.2021.09.003]
47. Lai ML, Tsai MJ, Yang FY, Hsu CY, Liu TC, Lee SW, Lee MH, Chiou GL, Liang JC, Tsai CC. A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review. 2013 Dec 1; 10: 90-115. [DOI:10.1016/j.edurev.2013.10.001]
48. Hsu CY, Chiou GL, Tsai MJ. Visual behavior and self-efficacy of game playing: An eye movement analysis. Interactive Learning Environments. 2019 Oct 3;27(7):942-52. [DOI:10.1080/10494820.2018.1504309]
49. Al-Moteri MO, Symmons M, Plummer V, Cooper S. Eye tracking to investigate cue processing in medical decision-making: A scoping review. Computers in Human Behavior. 2017 Jan 1; 66: 52-66. [DOI:10.1016/j.chb.2016.09.022]
50. Lin JJ, Lin SS. Integrating eye trackers with handwriting tablets to discover difficulties of solving geometry problems. British Journal of Educational Technology. 2018 Jan;49(1):17-29. [DOI:10.1111/bjet.12517]
51. Wang HS, Chen YT, Lin CH. The learning benefits of using eye trackers to enhance the geospatial abilities of elementary school students. British Journal of Educational Technology. 2014 Mar;45(2):340-55. [DOI:10.1111/bjet.12011]
52. Just MA, Carpenter PA. A theory of reading: from eye fixations to comprehension. Psychological review. 1980 Jul;87(4):329. [DOI:10.1037//0033-295X.87.4.329]
53. Rayner K. The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search. Quarterly journal of experimental psychology. 2009 Aug;62(8):1457-506. [DOI:10.1080/17470210902816461]
54. Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J. Eye tracking: A comprehensive guide to methods and measures. oup Oxford; 2011 Sep 22.
55. Ariasi N, Mason L. Uncovering the effect of text structure in learning from a science text: An eye-tracking study. Instructional science. 2011 Sep; 39: 581-601. [DOI:10.1007/s11251-010-9142-5]
56. Kok EM, Jarodzka H. Before your very eyes: The value and limitations of eye tracking in medical education. Medical education. 2017 Jan;51(1):114-22. [DOI:10.1111/medu.13066]
57. Duchowski AT, Duchowski AT. Eye tracking methodology: Theory and practice. Springer; 2017. [DOI:10.1007/978-3-319-57883-5]
58. Manor BR, Gordon E. Defining the temporal threshold for ocular fixation in free-viewing visuocognitive tasks. Journal of neuroscience methods. 2003 Sep 30;128(1-2):85-93. [DOI:10.1016/S0165-0270(03)00151-1]
59. Forrester JV, Dick AD, McMenamin P, Roberts F, Pearlman E. The eye. Elsevier; 2021.
60. Portello JK, Rosenfield M, Chu CA. Blink rate, incomplete blinks and computer vision syndrome. Optometry and vision science. 2013 May 1;90(5):482-7. [DOI:10.1097/OPX.0b013e31828f09a7]
61. Hirokawa K, Yagi A, Miyata Y. Comparison of blinking behavior during listening to and speaking in Japanese and English. Perceptual and motor skills. 2004 Apr;98(2):463-72. [DOI:10.2466/pms.98.2.463-472]
62. Karson CN, Berman KF, Donnelly EF, Mendelson WB, Kleinman JE, Wyatt RJ. Speaking, thinking, and blinking. Psychiatry research. 1981 Dec 1;5(3):243-6. [DOI:10.1016/0165-1781(81)90070-6]
63. Rayner K. Eye movements in reading and information processing: 20 years of research. Psychological bulletin. 1998 Nov;124(3):372. [DOI:10.1037//0033-2909.124.3.372]
64. Chen Z, Song W. Factors affecting human visual behavior and preference for sneakers: an eye-tracking study. Frontiers in Psychology. 2022 Jun 13; 13: 914321. [DOI:10.3389/fpsyg.2022.914321]
65. Milosavljevic M, Cerf M. First attention then intention: Insights from computational neuroscience of vision. International Journal of advertising. 2008 Jan 1;27(3):381-98. [DOI:10.2501/S0265048708080037]
66. Wright AA, Lynch Jr JG. Communication effects of advertising versus direct experience when both search and experience attributes are present. Journal of consumer research. 1995 Mar 1;21(4):708-18. [DOI:10.1086/209429]
67. Grolleau G, Caswell JA. Giving Credence to Environmental Labeling of Agro-Food Products: using search and experience attributes as an imperfect indicator of credibility. InEcolabels and the Greening of the Food Market. Proceedings of a Conference 2002 Nov 7 (pp. 121-130).
68. Overmars S, Poels K. Online product experiences: The effect of simulating stroking gestures on product understanding and the critical role of user control. Computers in Human Behavior. 2015 Oct 1; 51: 272-84. [DOI:10.1016/j.chb.2015.04.033]
69. Gere A, Héberger K, Kovács S. How to predict choice using eye-movements data?. Food Research International. 2021 May 1; 143: 110309. [DOI:10.1016/j.foodres.2021.110309]
70. Castilla D, Del Tejo Catalá O, Pons P, Signol F, Rey B, Suso-Ribera C, Perez-Cortes JC. Improving the understanding of web user behaviors through machine learning analysis of eye-tracking data. User Modeling and User-Adapted Interaction. 2023 Jul 31:1-30. [DOI:10.1007/s11257-023-09373-y]
71. Rizzo A, Ermini S, Zanca D, Bernabini D, Rossi A. A machine learning approach for detecting cognitive interference based on eye-tracking data. Frontiers in Human Neuroscience. 2022 Apr 29; 16: 806330. [DOI:10.3389/fnhum.2022.806330]
72. Akter T, Ali MH, Khan MI, Satu MS, Moni MA. Machine learning model to predict autism investigating eye-tracking dataset. In2021 2nd International conference on robotics, electrical and signal processing techniques (ICREST) 2021 Jan 5 (pp. 383-387). IEEE. [DOI:10.1109/ICREST51555.2021.9331152]
73. Zemblys R, Niehorster DC, Komogortsev O, Holmqvist K. Using machine learning to detect events in eye-tracking data. Behavior research methods. 2018 Feb; 50: 160-81. [DOI:10.3758/s13428-017-0860-3]
74. Antoniades CA, Spering M. Eye movements in Parkinson's disease: from neurophysiological mechanisms to diagnostic tools. Trends in Neurosciences. 2023 Dec 1. [DOI:10.1016/j.tins.2023.11.001]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeh D, Heidarzadeh K. Modeling of Consumers' Visual Behavior by Using Artificial Intelligence. Shefaye Khatam 2024; 12 (2) :10-20
URL: http://shefayekhatam.ir/article-1-2489-fa.html

ساده داود، حیدرزاده کامبیز. مدل‌سازی رفتار بصری مصرف کنندگان (CVB) با بکارگیری هوش مصنوعی. مجله علوم اعصاب شفای خاتم. 1403; 12 (2) :10-20

URL: http://shefayekhatam.ir/article-1-2489-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( بهار 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 51 queries by YEKTAWEB 4700