[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 12, Issue 3 (Summer 2024) ::
Shefaye Khatam 2024, 12(3): 91-102 Back to browse issues page
Comparative Analysis of Diagnostic Techniques in Alzheimer’s Disease: The Role of AI, Biomarkers, and Brain Mapping Methods
Elias Mazrooei * , Mohammad reza Dastury , Seyyed Ali Zendehbad
Department of Biomedical Engineering, Khavaran Institute of Higher Education, Mashhad, Iran , elias_mazrooei@yahoo.com
Abstract:   (901 Views)
Introduction: The primary aim of this article is to critically assess and compare conventional diagnostic methods for Alzheimer's disease (AD), with a particular focus on the promising capabilities of biomarkers and brain mapping techniques. As the incidence of AD rises globally, novel diagnostic strategies are needed to improve upon traditional methods, which often lack predictive accuracy and precision. This study provides an in-depth review of advanced diagnostic tools, including Artificial Intelligence (AI) applications (e.g., machine learning and deep learning), brain mapping techniques (e.g., electroencephalography and Magnetic Resonance Imaging), and biomarkers (e.g., tau protein and beta-amyloid), which can be identified through innovative visual and manual techniques. Additionally, the research explores the potential of identifying precursor proteins in the blood of patients with AD before symptom onset, presenting a significant opportunity for early intervention that could greatly impact treatment outcomes. Conclusion: The findings underscore the potential of combining brain mapping methods with manual analysis to facilitate transformational advancements in the diagnostics of AD. This combined approach enhances the detection of structural and functional brain changes associated with AD, contributing to more accurate and earlier diagnoses. Furthermore, brain-derived proteins are present at significantly higher levels in cerebrospinal fluid than in blood, where they are diluted by abundant plasma proteins, such as albumin and immunoglobulins. This observation raises questions about the reliability of current clinical diagnostic practices and emphasizes the importance of validating new diagnostic markers with AI-based manual techniques against neuropathological standards. Finally, the study concludes that AI, when used in conjunction with cognitive assessments, biomarkers, brain mapping approaches, and molecular testing, can substantially enhance diagnostic accuracy and reliability, which are essential for managing and treating patients with AD effectively.
 
Keywords: Electroencephalography, Dementia, Immunoglobulins, Artificial Intelligence
Full-Text [PDF 1384 kb]   (368 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Cognitive Neuroscience
References
1. Scheltens P, Blennow K, Breteler MM, De Strooper B, Frisoni GB, Salloway S, et al. Alzheimer's disease. The Lancet. 2016; 388(10043): 505-17. [DOI:10.1016/S0140-6736(15)01124-1]
2. Lynch C. World Alzheimer Report 2019: Attitudes to dementia, a global survey: Public health: Engaging people in ADRD research. Alzheimer's & Dementia. 2020; 16: e038255. [DOI:10.1002/alz.038255]
3. mazrooei e, azarnoosh m, ghoshuni m, khalilzadeh m. Comparison of the Function of the Elman Neural Network and the Deep Neural Network for the Diagnosis of Mild Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2021; 10(1): 1-11. [DOI:10.52547/shefa.10.1.1]
4. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer's disease. Neurotherapeutics. 2023; 19(1): 173-85. [DOI:10.1007/s13311-021-01146-y]
5. Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's disease biomarker analysis using targeted mass spectrometry. Molecular & Cellular Proteomics. 2024; 23(2). [DOI:10.1016/j.mcpro.2024.100721]
6. Levine TF, Allison SL, Dessenberger SJ, Head D, Initiative AsDN. Clinical utility of self-and informant-reported memory, attention, and spatial navigation in detecting biomarkers associated with Alzheimer disease in clinically normal adults. Journal of the International Neuropsychological Society. 2024; 30(3): 232-43. [DOI:10.1017/S1355617723000528]
7. Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, et al. Biosensors for Alzheimer's disease biomarker detection: a review. Biochimie. 2018; 147: 13-24. [DOI:10.1016/j.biochi.2017.12.015]
8. Mirzaie A, Nasrollahpour H, Khalilzadeh B, Jamali AA, Spiteri RJ, Yousefi H, et al. Cerebrospinal fluid: A specific biofluid for the biosensing of Alzheimer's diseases biomarkers. TrAC Trends in Analytical Chemistry. 2023: 117174. [DOI:10.1016/j.trac.2023.117174]
9. Alamro H, Thafar MA, Albaradei S, Gojobori T, Essack M, Gao X. Exploiting machine learning models to identify novel Alzheimer's disease biomarkers and potential targets. Scientific reports. 2023; 13(1): 4979. [DOI:10.1038/s41598-023-30904-5]
10. Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chemical Society Reviews. 2020; 49(15): 5446-72. [DOI:10.1039/D0CS00107D]
11. Rodríguez-Arellano J, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer's disease. Neuroscience. 2016; 323: 170-82. [DOI:10.1016/j.neuroscience.2015.01.007]
12. mazrooei rad e, pazhoumand h, salmani bajestani s. Separation of Healthy Individuals and Patients with Alzheimer's Disease Using the Effective Communication of Brain Signals. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 1-12. [DOI:10.52547/shefa.11.1.1]
13. Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer's disease in clinical practice and trials. Nature Aging. 2023; 3(5): 506-19. [DOI:10.1038/s43587-023-00403-3]
14. van Oostveen WM, de Lange EC. Imaging techniques in Alzheimer's disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences. 2021; 22(4): 2110. [DOI:10.3390/ijms22042110]
15. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, et al. Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage. 2004; 23: S2-S18. [DOI:10.1016/j.neuroimage.2004.07.071]
16. Q. Chen, Y. Li, and X. Yuan. "A hybrid method for muscle artifact removal from eeg signals," Journal of Neuroscience Methods. 2021; 353:109104. [DOI:10.1016/j.jneumeth.2021.109104]
17. Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harbor perspectives in medicine. 2012; 2(4): a006213. [DOI:10.1101/cshperspect.a006213]
18. khazaei h, Mazrooei Rad E. Alzheimer's Disease Diagnosis Using Brain Signals and Artificial Neural Networks. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 68-80. [DOI:10.61186/shefa.11.3.68]
19. Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, et al. Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis of neuroimaging studies. Neuroimage. 2023; 269: 119929. [DOI:10.1016/j.neuroimage.2023.119929]
20. Zendehbad A, Kobravi HR, Khalilzadeh MM, Sharifi Razavi A, Sasannejad P. A New Visual Biofeedback Protocol Based on Analyzing the Muscle Synergy Patterns to Recover the Upper Limbs Movement in Ischemic Stroke Patients: A Pilot Study. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 11-24. [DOI:10.61186/shefa.11.3.11]
21. Vijayakumaran P, Narzary D, Gonuguntla V, Lee H-W, Veluvolu KC, editors. EEG based Functional Connectivity Analysis of Alzheimer's Disease Subjects. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC); 2020: IEEE. [DOI:10.1109/ICAIIC48513.2020.9065285]
22. Zürcher C, Humpel C. Saliva: a challenging human fluid to diagnose brain disorders with a focus on Alzheimer's disease. Neural Regeneration Research. 2023; 18(12): 2606-10. [DOI:10.4103/1673-5374.373675]
23. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer's disease-preparing for a new era of disease-modifying therapies. Molecular psychiatry. 2021; 26(1): 296-308. [DOI:10.1038/s41380-020-0721-9]
24. Huang S, Wang Y-J, Guo J. Biofluid biomarkers of Alzheimer's disease: progress, problems, and perspectives. Neuroscience bulletin. 2022; 38(6): 677-91. [DOI:10.1007/s12264-022-00836-7]
25. Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. Journal of internal medicine. 2018; 284(6): 643-63. [DOI:10.1111/joim.12816]
26. Anoop A, Singh PK, Jacob RS, Maji SK. CSF biomarkers for Alzheimer's disease diagnosis. International journal of Alzheimer's disease. 2010; 2010. [DOI:10.4061/2010/606802]
27. Vromen EM, de Boer SC, Teunissen CE, Rozemuller A, Sieben A, Bjerke M, et al. Biomarker A+ T−: is this Alzheimer's disease or not? A combined CSF and pathology study. Brain. 2023; 146(3): 1166-74. [DOI:10.1093/brain/awac158]
28. Scarano S, Lisi S, Ravelet C, Peyrin E, Minunni M. Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms-A critical review. Analytica Chimica Acta. 2016; 940: 21-37. [DOI:10.1016/j.aca.2016.08.008]
29. Devitt G, Howard K, Mudher A, Mahajan S. Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS chemical neuroscience. 2018; 9(3): 404-20. [DOI:10.1021/acschemneuro.7b00413]
30. Topor C-V, Puiu M, Bala C. Strategies for surface design in surface plasmon resonance (SPR) sensing. Biosensors. 2023; 13(4): 465. [DOI:10.3390/bios13040465]
31. Song C, Guo S, Jin S, Chen L, Jung YM. Biomarkers determination based on surface-enhanced Raman scattering. Chemosensors. 2020; 8(4): 118. [DOI:10.3390/chemosensors8040118]
32. Zhao J, Xu N, Yang X, Ling G, Zhang P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer's disease. Colloid and Interface Science Communications. 2022; 46: 100579. [DOI:10.1016/j.colcom.2021.100579]
33. de Oliveira TR, Erbereli CR, Manzine PR, Magalhaes TN, Balthazar ML, Cominetti MR, Faria RC. Early diagnosis of Alzheimer's disease in blood using a disposable electrochemical microfluidic platform. ACS sensors. 2020; 5(4): 1010-9. [DOI:10.1021/acssensors.9b02463]
34. Mobed A, Hasanzadeh M. Biosensing: The best alternative for conventional methods in detection of Alzheimer's disease biomarkers. International journal of biological macromolecules. 2020; 161: 59-71. [DOI:10.1016/j.ijbiomac.2020.05.257]
35. Korecka M, Shaw LM. Mass spectrometry‐based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. Journal of neurochemistry. 2021; 159(2): 211-33. [DOI:10.1111/jnc.15465]
36. Liu Y, Huang Z, Xu Q, Zhang L, Liu Q, Xu T. Portable electrochemical micro-workstation platform for simultaneous detection of multiple Alzheimer's disease biomarkers. Microchimica acta. 2022; 189(3): 91. [DOI:10.1007/s00604-022-05199-4]
37. Rani S, Dhar SB, Khajuria A, Gupta D, Jaiswal PK, Singla N, et al. Advanced overview of biomarkers and techniques for early diagnosis of alzheimer's disease. Cellular and Molecular Neurobiology. 2023; 43(6): 2491-523. [DOI:10.1007/s10571-023-01330-y]
38. Kulkarni MB, Ayachit NH, Aminabhavi TM. Biosensors and microfluidic biosensors: from fabrication to application. Biosensors. 2022; 12(7): 543. [DOI:10.3390/bios12070543]
39. Sharma A, Angnes L, Sattarahmady N, Negahdary M, Heli H. Electrochemical Immunosensors Developed for Amyloid-Beta and Tau Proteins, Leading Biomarkers of Alzheimer's Disease. Biosensors. 2023; 13(7): 742. [DOI:10.3390/bios13070742]
40. Le PG, Choi SH, Cho S. Alzheimer's Disease Biomarker Detection Using Field Effect Transistor-Based Biosensor. Biosensors. 2023; 13(11): 987. [DOI:10.3390/bios13110987]
41. Rouhi N, Akhgari A, Orouji N, Nezami A, Rahimzadegan M, Kamali H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimer's biomarkers. Journal of Pharmaceutical and Biomedical Analysis. 2023; 222: 115084. [DOI:10.1016/j.jpba.2022.115084]
42. Kim K, Kim M-J, Kim DW, Kim SY, Park S, Park CB. Clinically accurate diagnosis of Alzheimer's disease via multiplexed sensing of core biomarkers in human plasma. Nature communications. 2020; 11(1): 119. [DOI:10.1038/s41467-019-13901-z]
43. Miku E. Recent advancements in electrochemical biosensors for Alzheimer's disease biomarkers detection. Current Medicinal Chemistry. 2021; 28(20): 4049-73. [DOI:10.2174/0929867327666201111141341]
44. Mazrooei E, Azarnoosh M, Ghoshuni M, Khalilzadeh MM. Early detection of alzheimer's disease with nonlinear features of eeg signal and mri images by convolutional neural network. International Clinical Neuroscience Journal. 2022; 9: e20-e. [DOI:10.34172/icnj.2022.20]
45. Bazarbekov I, Razaque A, Ipalakova M, Yoo J, Assipova Z, Almisreb A. A review of artificial intelligence methods for Alzheimer's disease diagnosis: Insights from neuroimaging to sensor data analysis. Biomedical Signal Processing and Control. 2024; 92: 106023. [DOI:10.1016/j.bspc.2024.106023]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mazrooei E, Dastury M R, Zendehbad S A. Comparative Analysis of Diagnostic Techniques in Alzheimer’s Disease: The Role of AI, Biomarkers, and Brain Mapping Methods. Shefaye Khatam 2024; 12 (3) :91-102
URL: http://shefayekhatam.ir/article-1-2490-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 3 (Summer 2024) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4710