|
|
 |
Volume 12, Issue 3 (Summer 2024) |
 |
|
|
Anatomical, Physiological, and Pathological Changes in Different Parts of the Brain in Alzheimer's Disease
|
Sadegh Shirian * , Narges Tahmasebian , Behnam Bakhtiari Moghadm , Fatemh Zahra Kiani , Mohammad Rasoul Amini  |
Department of Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran , shirian85@gmail.com |
|
Abstract: (824 Views) |
Introduction: Alzheimer's disease (AD) is a serious and progressive neurodegenerative disorder, that poses a significant health challenge in industrialized societies. Primarily associated with aging, AD frequently leads to dementia and is characterized by cognitive decline, synaptic dysfunction, and the presence of neurofibrillary tangles within the brain. Key pathological features of this disease include the destruction of neuronal synapses, necrosis of brain cells, and the extracellular accumulation of amyloid-beta (Aβ) protein, forming amyloid plaques. The neuropathology of AD is complex, involving mixed proteinopathy. This is characterized by the deposition of Aβ in the brain tissues as amyloid plaques and the formation of tau-related neurofibrillary tangles within neurons, often accompanied by cerebral amyloid angiopathy. From an anatomical view, AD is commonly associated with moderate atrophy of structures within the subcortical structures. Moreover, the frontal and temporal cortices often exhibit pronounced atrophy and ventricular enlargement. However, the primary motor and sensory cortices generally remain unaffected in the majority of AD cases. Physiologically, the pathogenesis of AD is complex and involves various mechanisms, such as oxidative stress, apoptotic cell death, genetic mutations, hyperphosphorylation of tau protein, and dysregulation of metal ion homeostasis. Conclusion: Understanding the anatomical, physiological, and pathological changes that occur in AD is crucial for advancing awareness of the disease’s progression and for improving diagnostic, preventive, and therapeutic strategies. This review explores these alterations across various brain regions to provide a comprehensive perspective on the pathophysiological mechanisms underlying AD.
|
|
Keywords: Amyloid, Pathological Conditions, Anatomical, Neuropathology |
|
Full-Text [PDF 540 kb]
(284 Downloads)
|
Type of Study: Review --- Open Access, CC-BY-NC |
Subject:
Neurology
|
|
|
|
|
References |
1. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. International journal of molecular sciences. 2016;17(2):189. [ DOI:10.3390/ijms17020189] 2. M Ashraf G, H Greig N, A Khan T, Hassan I, Tabrez S, Shakil S, et al. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014;13(7):1280-1293. [ DOI:10.2174/1871527313666140917095514] 3. Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nature medicine. 2004;10(Suppl 7): S10-S7. [ DOI:10.1038/nm1066] 4. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 2019;15(10):565-581. [ DOI:10.1038/s41582-019-0244-7] 5. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harbor perspectives in biology. 2017;9(7): a028035. [ DOI:10.1101/cshperspect.a028035] 6. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. The Journal of clinical investigation. 2005;115(6):1449-57. [ DOI:10.1172/JCI24761] 7. Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain sciences. 2020;10(2):84. [ DOI:10.3390/brainsci10020084] 8. Doshmanziari M, Shirian S, Kouchakian MR, Moniri SF, Jangnoo S, Mohammadi N, Zafari F. Mesenchymal stem cells act as stimulators of neurogenesis and synaptic function in a rat model of Alzheimer's disease. Heliyon. 2021;7(9). [ DOI:10.1016/j.heliyon.2021.e07996] 9. Rajabi S, Noori S, Zal F, Jahanbazi Jahan-AbAD A. Oxidative stress and its different roles in neurodegenerative diseases. The Neuroscience Journal of Shefaye Khatam. 2017;5(1):73-86. [ DOI:10.18869/acadpub.shefa.5.1.73] 10. Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. Journal of Neural Transmission. 2020;127(9):1229-56. [ DOI:10.1007/s00702-020-02232-9] 11. Javdani M, Habibi A, Shirian S, Kojouri GA, Hosseini F. Effect of selenium nanoparticle supplementation on tissue inflammation, blood cell count, and IGF-1 levels in spinal cord injury-induced rats. Biological trace element research. 2019;187: 202-211. [ DOI:10.1007/s12011-018-1371-5] 12. Yun HJ, Kwak K, Lee J-M, Initiative AsDN. Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism. PloS one. 2015;10(6): e0129250. [ DOI:10.1371/journal.pone.0129250] 13. Gallardo G, Holtzman DM. Amyloid-β and Tau at the CrossroADs of Alzheimer's Disease. Tau Biology. 2019:187-203. [ DOI:10.1007/978-981-32-9358-8_16] 14. Khasawneh RR, Abu-El-Rub E, Alzu'bi A, AbdelhADy GT, Al-Soudi HS. Corpus callosum anatomical changes in Alzheimer patients and the effect of acetylcholinesterase inhibitors on corpus callosum morphometry. PLoS One. 2022;17(7): e0269082. [ DOI:10.1371/journal.pone.0269082] 15. Liu H, Zhang X. Pediatric Neuroimaging: Cases and Illustrations: Springer Nature; 2022. [ DOI:10.1007/978-981-16-7928-5] 16. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An Investigation into the Effects of Water-and Fat-Soluble Vitamins in Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam. 2023;11(3):95-109. [ DOI:10.61186/shefa.11.3.95] 17. Kim E-J, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cerebral cortex. 2012;22(2):251-259. [ DOI:10.1093/cercor/bhr004] 18. Seeley WW. Mapping neurodegenerative disease onset and progression. Cold Spring Harbor perspectives in biology. 2017;9(8): a023622. [ DOI:10.1101/cshperspect.a023622] 19. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB. Brain atrophy in Alzheimer's disease and aging. Ageing research reviews. 2016;30:25-48. [ DOI:10.1016/j.arr.2016.01.002] 20. Buccilli B, Sahab-Negah S, Shirian S, Gorji A, Ghadiri MK, Ascenzi BM. The Telencephalon: Amygdala and Claustrum. InFrom Anatomy to Function of the Central Nervous System 2025; 429-451. [ DOI:10.1016/B978-0-12-822404-5.00006-1] 21. Blinkouskaya Y, Weickenmeier J. Brain shape changes associated with cerebral atrophy in healthy aging and Alzheimer's disease. Frontiers in Mechanical Engineering. 2021; 7: 705653. [ DOI:10.3389/fmech.2021.705653] 22. CADwell CR, BhADuri A, Mostajo-RADji MA, Keefe MG, Nowakowski TJ. Development and arealization of the cerebral cortex. Neuron. 2019;103(6):980-1004. [ DOI:10.1016/j.neuron.2019.07.009] 23. Yang H, Xu H, Li Q, Jin Y, Jiang W, Wang J, et al. Study of brain morphology change in Alzheimer's disease and amnestic mild cognitive impairment compared with normal controls. General psychiatry. 2019;32(2). [ DOI:10.1136/gpsych-2018-100005] 24. Habes M, Sotiras A, Erus G, Toledo JB, Janowitz D, Wolk DA, et al. White matter lesions: spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy. Neurology. 2018;91(10): e964-e75. [ DOI:10.1212/WNL.0000000000006116] 25. Hiscox LV, Johnson CL, McGarry MD, Marshall H, Ritchie CW, Van Beek EJ, et al. Mechanical property alterations across the cerebral cortex due to Alzheimer's disease. Brain Communications. 2020;2(1): fcz049. [ DOI:10.1093/braincomms/fcz049] 26. Frings L, Yew B, Flanagan E, Lam BY, Hüll M, Huppertz H-J, et al. Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease. PloS one. 2014;9(3): e90814. [ DOI:10.1371/journal.pone.0090814] 27. Blinkouskaya Y, Weickenmeier J. Brain shape changes associated with cerebral atrophy in healthy aging and Alzheimer's disease. Frontiers in Mechanical Engineering. 2021; 7: 705653. [ DOI:10.3389/fmech.2021.705653] 28. Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leADing to dementia. Progress in neurobiology. 2012;97(1):38-51. [ DOI:10.1016/j.pneurobio.2012.03.005] 29. Jimenez JP. Systematic Study of Amyloid Beta Peptide Conformations: Implications for Alzheimer's Diseas 2005. 30. Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi-Barough S, Gholami L, Hussain MF, et al. Comparison of the regenerative effect of adipose tissue mesenchymal stem cell encapsulated into two hydrogel scaffolds on spinal cord injury. Archives of Neuroscience. 2022;9(1). [ DOI:10.5812/ans.119170] 31. Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. The EMBO journal. 2010;29(19):3408-420. [ DOI:10.1038/emboj.2010.211] 32. Volicer L. Physiological and pathological functions of beta-amyloid in the brain and Alzheimer's disease: a review. Chinese Journal of Physiology. 2020;63(3):95. [ DOI:10.4103/CJP.CJP_10_20] 33. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in neurobiology. 2014; 112: 24-49. [ DOI:10.1016/j.pneurobio.2013.10.004] 34. Hahr JY. Physiology of the Alzheimer's disease. Medical Hypotheses. 2015;85(6):944-6. [ DOI:10.1016/j.mehy.2015.09.005] 35. ReAD J, Suphioglu C. Dropping the BACE: beta secretase (BACE1) as an Alzheimer's disease intervention target. Neurodegenerative Diseases. 2013;628. [ DOI:10.5772/53603] 36. Penke B, Bogár F, Fülöp L. β-Amyloid and the pathomechanisms of Alzheimer's disease: a comprehensive view. Molecules. 2017;22(10):1692. [ DOI:10.3390/molecules22101692] 37. Rabbani G, Choi I. Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. International journal of biological macromolecules. 2018; 109: 483-491. [ DOI:10.1016/j.ijbiomac.2017.12.100] 38. Hahr JY. Physiology of the Alzheimer's disease. Medical Hypotheses. 2015;85(6):944-6. [ DOI:10.1016/j.mehy.2015.09.005] 39. Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. Journal of neuroscience research. 2017;95(4):943-972. [ DOI:10.1002/jnr.23777] 40. Raskin J, Cummings J, Hardy J, Schuh K, A Dean R. Neurobiology of Alzheimer's disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Current Alzheimer Research. 2015;12(8):712-722. [ DOI:10.2174/1567205012666150701103107] 41. Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer's disease. Expert review of neurotherapeutics. 2017;17(1):47-57. [ DOI:10.1080/14737175.2016.1204234] 42. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917-933. [ DOI:10.1093/brain/awy132] 43. Toledano A, Toledano-Díaz A, Merino J-J, Rodríguez JJ. Brain local and regional neuroglial alterations in Alzheimer' s Disease: cell types, responses and implications. Current Alzheimer Research. 2016;13(4):321-342. [ DOI:10.2174/1567205013666151116141217] 44. Osborn LM, Kamphuis W, WADman WJ, Hol EM. Astrogliosis: an integral player in the pathogenesis of Alzheimer's disease. Progress in neurobiology. 2016; 144:121-141. [ DOI:10.1016/j.pneurobio.2016.01.001] 45. Shirian S, Daneshbod Y, Jangjoo S, Ghaemi A, Goodarzi A, Ghavideldarestani M, Emadi A, Ai A, Ahmadi A, Ai J. The Role of Next Generation Sequencing in Diagnosis of Brain Tumors: A Review Study. Archives of Neuroscience. 2020;7(1). [ DOI:10.5812/ans.68874] 46. Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, et al. Alzheimer's disease: A molecular view of β-amyloid induced morbific events. Biomedicines. 2021;9(9):1126. [ DOI:10.3390/biomedicines9091126] 47. Torabimehr F, Kordi MR, Nouri R, Ai J, Shirian S. The role of forced and voluntary training on accumulation of neural cell adhesion molecule and polysialic acid in muscle of mice with experimental autoimmune encephalomyelitis. Evidence‐Based Complementary and Alternative Medicine. 2020;2020(1):5160958. [ DOI:10.1155/2020/5160958] 48. Muzio L, Viotti A, Martino G. Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Frontiers in neuroscience. 2021; 15: 742065. [ DOI:10.3389/fnins.2021.742065] 49. Bir SC, Khan MW, Javalkar V, Toledo EG, Kelley RE. Emerging concepts in vascular dementia: a review. Journal of Stroke and Cerebrovascular Diseases. 2021;30(8):105864. [ DOI:10.1016/j.jstrokecerebrovasdis.2021.105864] 50. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer's disease. Neurotherapeutics. 2022;19(1):173-85. [ DOI:10.1007/s13311-021-01146-y] 51. Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β‐amyloid in Alzheimer's disease. Pathology international. 2017;67(4):185-193. [ DOI:10.1111/pin.12520] 52. van der Kant R, Goldstein LS, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nature Reviews Neuroscience. 2020;21(1):21-35. [ DOI:10.1038/s41583-019-0240-3] 53. Vetrivel KS, Thinakaran G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology. 2006;66: S69-S73. [ DOI:10.1212/01.wnl.0000192107.17175.39] 54. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer's disease. Neurotherapeutics. 2022;19(1):173-185. [ DOI:10.1007/s13311-021-01146-y] 55. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease-one peptide, two pathways. Nature Reviews Neurology. 2020;16(1):30-42. [ DOI:10.1038/s41582-019-0281-2] 56. Thal DR, Tomé SO. The central role of tau in Alzheimer's disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Research Bulletin. 2022. [ DOI:10.1016/j.brainresbull.2022.10.006] 57. d'Abramo C, D'ADamio L, Giliberto L. Significance of blood and cerebrospinal fluid biomarkers for Alzheimer's disease: sensitivity, specificity and potential for clinical use. Journal of Personalized Medicine. 2020;10(3):116. [ DOI:10.3390/jpm10030116] 58. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer's disease. Neurotherapeutics. 2022;19(1):173-185. [ DOI:10.1007/s13311-021-01146-y] 59. Tarawneh R, Galvin JE. Distinguishing Lewy body dementias from Alzheimer's disease. Expert review of neurotherapeutics. 2007;7(11):1499-516. [ DOI:10.1586/14737175.7.11.1499] 60. Chew H, Solomon VA, Fonteh AN. Involvement of lipids in Alzheimer's disease pathology and potential therapies. Frontiers in physiology. 2020; 11: 598. [ DOI:10.3389/fphys.2020.00598] 61. Cao J, Zhong MB, Toro CA, Zhang L, Cai D. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer's disease pathogenesis. Neuroscience letters. 2019; 703: 68-78. [ DOI:10.1016/j.neulet.2019.03.016] 62. van der Kant R, Goldstein LS, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nature Reviews Neuroscience. 2020;21(1):21-35. [ DOI:10.1038/s41583-019-0240-3] 63. Ghadiri T, Azarfarin M, Namvar G, Samnia Z. Underlying Mechanisms of Neuroprotective Actions of Klotho Against Cognitive Impairment in Neurodegenerative Diseases. The Neuroscience Journal of Shefaye Khatam. 2024;12(1):1-17. [ DOI:10.61186/shefa.12.1.94] 64. Sasan H, Samareh Gholami A, Hashemabadi M. Alteration in the Expression of Alzheimer's-Related Genes in Rat Hippocampus by Exercise and Morphine Treatments. The Neuroscience Journal of Shefaye Khatam. 2019;7(4):23-29. [ DOI:10.29252/shefa.7.4.23] 65. Moradi HR, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024; 12(2):87-101. [ DOI:10.61186/shefa.12.2.87]
|
|
Shirian S, Tahmasebian N, Bakhtiari Moghadm B, Kiani F Z, Amini M R. Anatomical, Physiological, and Pathological Changes in Different Parts of the Brain in Alzheimer's Disease. Shefaye Khatam 2024; 12 (3) :103-116 URL: http://shefayekhatam.ir/article-1-2493-en.html
|
|
|
|
|