[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 13، شماره 1 - ( زمستان 1403 ) ::
دوره 13 شماره 1 صفحات 115-104 برگشت به فهرست نسخه ها
نواحی مغزی و سیستم‌های نوروترانسمیتری دخیل در بی دردی القاء شده توسط استرس
فرزانه نظری سرنجه* ، زهرا قاسم زاده
گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران ، nazari.f@pnu.ac.ir
چکیده:   (450 مشاهده)
مقدمه: بی‌دردی القاشده توسط استرس (SIA) پدیده‌ای است که در آن، قرار گرفتن در معرض استرس باعث کاهش موقت درک درد می‌شود. این فرآیند از دیدگاه‌های فیزیولوژیکی، عصبی و رفتاری به طور گسترده مورد مطالعه قرار گرفته است. پژوهش‌ها نشان می‌دهند که مکانیسم‌های متعددی در ایجاد SIA نقش دارند، که شامل آزادسازی اوپیوئیدهای درون‌زا، فعال‌سازی سیستم کانابینوئیدی، درگیر شدن نوروپپتیدها، و تغییرات در سیستم عصبی مرکزی و محیطی است. علاوه بر این، محور هیپوتالاموس-هیپوفیز-آدرنال به‌عنوان یک تنظیم‌کننده کلیدی SIA شناخته شده است. این مقاله مروری، تحلیل جامعی از پژوهش‌های اخیر در مورد مکانیسم‌های عصبی و مولکولی دخیل در SIA ارائه می‌دهد. نتیجه‌گیری: درک بهتر مکانیسم‌های مؤثر در SIA می‌تواند به توسعه روش‌های درمانی نوین برای مدیریت درد و استرس کمک کند. علاوه‌ بر این، این یافته‌ها ممکن است در بهبود شرایط روانی و فیزیولوژیکی مرتبط، مانند اضطراب و اختلالات درد مزمن، مؤثر باشند.
 
واژه‌های کلیدی: درد، کانابینوییدها، اضطراب
متن کامل [PDF 422 kb]   (141 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: تحقیقات پایه در علوم اعصاب
فهرست منابع
1. Hameed S. Nav 1.7 and Nav 1.8: Role in the pathophysiology of pain. Molecular pain 2019; 15: 1744806919858801. [DOI:10.1177/1744806919858801]
2. Finn D. The impact of stress on pain. Physiology News. 2017; 25-7. [DOI:10.36866/pn.108.25]
3. Kazakou P, Nicolaides NC, Chrousos GP. Basic concepts and hormonal regulators of the stress system. Hormone research in paediatrics. 2023; 96(1): 8-16. [DOI:10.1159/000523975]
4. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews neuroscience. 2009; 10(6): 397-409. [DOI:10.1038/nrn2647]
5. Millan MJ. Descending control of pain Progress in Neurobiology. 2002; 66(6): 355-474. [DOI:10.1016/S0301-0082(02)00009-6]
6. Todd AJ. An historical perspective: the second order neuron in the pain pathway. Frontiers in Pain Research 2022; 3: 845211. [DOI:10.3389/fpain.2022.845211]
7. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. European journal of pain. 2005; 9(4): 463-84. [DOI:10.1016/j.ejpain.2004.11.001]
8. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain research reviews. 2009; 60(1): 214-25. [DOI:10.1016/j.brainresrev.2008.12.009]
9. García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules. 2024; 14(8): 926. [DOI:10.3390/biom14080926]
10. Butler RK, Finn DP. Stress-induced analgesia. Progress in neurobiology. 2009; 88(3): 184-202. [DOI:10.1016/j.pneurobio.2009.04.003]
11. Hannibal KE, Bishop MD. Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Physical therapy. 2014; 94(12): 1816-25. [DOI:10.2522/ptj.20130597]
12. Ferdousi M, Finn DP. Stress-induced modulation of pain: role of the endogenous opioid system. Progress in brain research. 2018; 239: 121-77. [DOI:10.1016/bs.pbr.2018.07.002]
13. McEwen BS. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiological reviews. 2007; 87(3): 873-904. [DOI:10.1152/physrev.00041.2006]
14. Mogil JS. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience. 2012; 13(12): 859-66. [DOI:10.1038/nrn3360]
15. Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, et al. Abnormalities in hippocampal functioning with persistent pain. Journal of Neuroscience. 2012; 32(17): 5747-56. [DOI:10.1523/JNEUROSCI.0587-12.2012]
16. Liu MG, Chen J. Roles of the hippocampal formation in pain information processing. Neuroscience bulletin. [Internet]. 2009 [cited 2024 Dec 8];25(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552607/ [DOI:10.1007/s12264-009-0905-4]
17. Soleimannejad E, Semnanian S, Fathollahi Y, Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behavioural brain research. 2006; 168(2): 221-5. [DOI:10.1016/j.bbr.2005.11.011]
18. McKenna JE, Melzack R. Analgesia produced by lidocaine microinjection into the dentate gyms. Pain. 1992; 49(1): 105-12. [DOI:10.1016/0304-3959(92)90195-H]
19. Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neuroscience & Biobehavioral Reviews. 2015; 53: 139-59. [DOI:10.1016/j.neubiorev.2015.03.014]
20. Tajerian M, Hung V, Nguyen H, Lee G, Joubert LM, Malkovskiy AV, et al. The hippocampal extracellular matrix regulates pain and memory after injury. Molecular psychiatry. 2018; 23(12): 2302-13. [DOI:10.1038/s41380-018-0209-z]
21. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011; 476(7361): 458-61. [DOI:10.1038/nature10287]
22. Merdasi PG, Dezfouli RA, Mazaheri S, Haghparast A. Blocking the dopaminergic receptors in the hippocampal dentate gyrus reduced the stress-induced analgesia in persistent inflammatory pain in the rat. Physiology & Behavior. 2022; 253: 113848. [DOI:10.1016/j.physbeh.2022.113848]
23. Baghani M, Bolouri-Roudsari A, Askari R, Haghparast A. Orexin receptors in the hippocampal dentate gyrus modulated the restraint stress-induced analgesia in the animal model of chronic pain. Behavioural Brain Research. 2024; 459: 114772. [DOI:10.1016/j.bbr.2023.114772]
24. Zareie F, Ghalebandi S, Askari K, Mousavi Z, Haghparast A. Orexin receptors in the CA1 region of hippocampus modulate the stress-induced antinociceptive responses in an animal model of persistent inflammatory pain. Peptides. 2022; 147: 170679. [DOI:10.1016/j.peptides.2021.170679]
25. Xie Y feng, Huo F quan, Tang J shi. Cerebral cortex modulation of pain. Acta Pharmacologica Sinica. 2009; 30(1): 31-41. [DOI:10.1038/aps.2008.14]
26. Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Molecular neurobiology. 2019; 56(2): 1137-66. [DOI:10.1007/s12035-018-1130-9]
27. Meagher MW, Grau JW, King RA. Frontal cortex lesions block the opioid and nonopioid hypoalgesia elicited by brief shocks but not the nonopioid hypoalgesia elicited by long shocks. Behavioral Neuroscience. 1989; 103(6): 1366. [DOI:10.1037/0735-7044.103.6.1366]
28. Lu F, Tang J, Yuan B, Jia H. Effects of bilateral lesions of ventrolateral orbital cortex on the rat tail flick reflex inhibition evoked by electroacupuncture. Zhen ci yan jiu= Acupuncture Research. 1996; 21(2): 39-42.
29. Neugebauer V. Amygdala Pain Mechanisms. In: Schaible HG, editor. Pain Control [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015 [cited 2024 Dec 8]. p. 261-84. (Handbook of Experimental Pharmacology; vol. 227). Available from: https://link.springer.com/10.1007/978-3-662-46450-2_13 [DOI:10.1007/978-3-662-46450-2_13]
30. Mena NarasaB, Mathur R, Nayar U. Amygdalar involvement in pain. Indian journal of physiology and pharmacology. 1995; 39: 339-46.
31. Werka T. Post-stress analgesia in rats with partial amygdala lesions. Acta neurobiologiae experimentalis. 1994; 54(2): 127-32. [DOI:10.55782/ane-1994-1009]
32. Connell K, Bolton N, Olsen D, Piomelli D, Hohmann AG. Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia. Neuroscience letters. 2006; 397(3): 180-4. [DOI:10.1016/j.neulet.2005.12.008]
33. Helmstetter FJ, Tershner SA, Poore LH, Bellgowan PS. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Research. 1998; 779(1-2): 104-18. [DOI:10.1016/S0006-8993(97)01104-9]
34. Pavlovic ZW, Cooper ML, Bodnar RJ. Enhancements in swim stress-induced hypothermia, but not analgesia, following amygdala lesions in rats. Physiology & behavior. 1996; 59(1): 77-82. [DOI:10.1016/0031-9384(95)02038-1]
35. Mokhtar M, Singh P. Neuroanatomy, periaqueductal gray. 2020 [cited 2024 Dec 8]; Available from: https://europepmc.org/article/nbk/nbk554391
36. Siegfried B, de Souza RLN. NMDA receptor blockade in the periaqueductal grey prevents stress-induced analgesia in attacked mice. European journal of pharmacology. 1989; 168(2): 239-42. [DOI:10.1016/0014-2999(89)90570-0]
37. Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cellular and Molecular Neurobiology. 2023; 43(4): 1453-68. [DOI:10.1007/s10571-022-01262-z]
38. Wiedenmayer CP, Goodwin GA, Barr GA. The effect of periaqueductal gray lesions on responses to age-specific threats in infant rats. Developmental Brain Research. 2000; 120(2): 191-8. [DOI:10.1016/S0165-3806(00)00009-2]
39. Bouchet CA, Ingram SL. Cannabinoids in the descending pain modulatory circuit: Role in inflammation. Pharmacology & therapeutics. 2020; 209: 107495. [DOI:10.1016/j.pharmthera.2020.107495]
40. Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Erbaugh LJ, Eagle AL, et al. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife. 2021; 10: e66446. [DOI:10.7554/eLife.66446]
41. Dafny N, Dong WQ, Prieto-Gomez C, Reyes-Vazquez C, Stanford J, Qiao JT. Lateral hypothalamus: site involved in pain modulation. Neuroscience. 1996; 70(2): 449-60. [DOI:10.1016/0306-4522(95)00358-4]
42. Filaretov AA, Bogdanov AI, Yarushkina NI. Stress-induced analgesia. The role of hormones produced by the hypophyseal-Adrenocortical system. Neuroscience and behavioral physiology. 1996; 26(6): 572-8. [DOI:10.1007/BF02359502]
43. Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, et al. Oxytocin mediates stress‐induced analgesia in adult mice. The Journal of physiology. 2002; 540(2): 593-606. [DOI:10.1113/jphysiol.2001.013492]
44. Ji G, Neugebauer V. Pro- and Anti-Nociceptive Effects of Corticotropin-Releasing Factor (CRF) in Central Amygdala Neurons Are Mediated Through Different Receptors. Journal of neurophysiology. 2008; 99(3): 1201-12. [DOI:10.1152/jn.01148.2007]
45. Felipe CD, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998; 392(6674): 394-7. [DOI:10.1038/32904]
46. Yesilyurt O, Seyrek M, Tasdemir S, Kahraman S, Deveci MS, Karakus E, et al. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia. European journal of pharmacology. 2015; 762: 402-10. [DOI:10.1016/j.ejphar.2015.04.020]
47. Shin H, Kim J, Choi SR, Kang DW, Moon JY, Roh DH, et al. Antinociceptive effect of intermittent fasting via the orexin pathway on formalin-induced acute pain in mice. Scientific Reports. 2023; 13(1): 20245. [DOI:10.1038/s41598-023-47278-3]
48. Millan MJ. Descending control of pain Progress in Neurobiology. 2002. [DOI:10.1016/S0301-0082(02)00009-6]
49. Akil H, Mayer DJ, Liebeskind JC. Antagonism of Stimulation-Produced Analgesia by Naloxone, a Narcotic Antagonist. Science. 1976; 191(4230): 961-2. [DOI:10.1126/science.1251210]
50. Bernstein L, Garzone PD, Rudy T, Kramer B, Stiff D, Peitzman A. Pain perception and serum beta-endorphin in trauma patients. Psychosomatics. 1995; 36(3): 276-84. [DOI:10.1016/S0033-3182(95)71667-X]
51. Fechir M, Breimhorst M, Kritzmann S, Geber C, Schlereth T, Baier B, et al. Naloxone inhibits not only stress‐induced analgesia but also sympathetic activation and baroreceptor‐reflex sensitivity. European Journal of Pain. 2012; 16(1): 82-92. [DOI:10.1016/j.ejpain.2011.06.009]
52. Rubinstein M, Mogil JS, Japón M, Chan EC, Allen RG, Low MJ. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proceedings of the National Academy of Sciences. 1996; 93(9): 3995-4000. [DOI:10.1073/pnas.93.9.3995]
53. Kieffer BL, Kieffer BL. Opioids: first lessons from knockout mice. Trends in pharmacological sciences. 1999; 20(1): 19-26. [DOI:10.1016/S0165-6147(98)01279-6]
54. Menendez L, Andrés-Trelles F, Hidalgo A, Baamonde A. Gender and test dependence of a type of kappa mediated stress induced analgesia in mice. General Pharmacology: The Vascular System. 1994; 25(5): 903-8. [DOI:10.1016/0306-3623(94)90094-9]
55. Chen X, Zhang J, Wang X. Hormones in pain modulation and their clinical implications for pain control: a critical review. Hormones. 2016; 15(3): 313-20. [DOI:10.14310/horm.2002.1696]
56. Sheng J, Liu S, Wang Y, Cui R, Zhang X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural plasticity. 2017; 1-10. [DOI:10.1155/2017/9724371]
57. Martikainen IK, Hagelberg N, Jääskeläinen SK, Hietala J, Pertovaara A. Dopaminergic and serotonergic mechanisms in the modulation of pain: In vivo studies in human brain. European Journal of Pharmacology. 2018; 834: 337-45. [DOI:10.1016/j.ejphar.2018.07.038]
58. Siahposht-Khachaki A, Nazari-Serenjeh F, Rezaee L, Haghparast A, Rashvand M, Haghparast A. Dopaminergic receptors in the ventral tegmental area modulated the lateral hypothalamic stimulation-induced antinociception in an animal model of tonic pain. Neuroscience Letter. 2021; 751: 135827. [DOI:10.1016/j.neulet.2021.135827]
59. Rezaee L, Alizadeh AM, Haghparast A. Role of hippocampal dopamine receptors in the antinociceptive responses induced by chemical stimulation of the lateral hypothalamus in animal model of acute pain. Brain Research. 2020; 1734: 146759. [DOI:10.1016/j.brainres.2020.146759]
60. Dezfouli RA, Mazaheri S, Mousavi Z, Haghparast A. Restraint stress induced the antinociceptive responses via the dopamine receptors within the hippocampal CA1 area in animal model of persistent inflammatory pain. Behavioural Brain Research. 2023; 443: 114307. [DOI:10.1016/j.bbr.2023.114307]
61. Nazari-Serenjeh F, Sadeghi M, Azizbeigi R, Semizeh H, Mazaheri S, Haghparast A, et al. Blocking the dopaminergic receptors within the hippocampal dentate gyrus reduced analgesic responses induced by restraint stress in the formalin test. Behavioural Brain Research. 2024; 463: 114914. [DOI:10.1016/j.bbr.2024.114914]
62. Snow AE, Tucker SM, Dewey WL. The role of neurotransmitters in stress-induced antinociception (SIA). Pharmacology Biochemistry and Behavior. 1982; 16(1): 47-50. [DOI:10.1016/0091-3057(82)90011-9]
63. Kulkarni SK. Heat and other physiological stress-induced analgesia: catecholamine mediated and naloxone reversible response. Life sciences. 1980; 27(3): 185-8. [DOI:10.1016/0024-3205(80)90136-8]
64. Nocheva H, Stoynev N, Vodenicharov V, Krastev D, Krastev N, Mileva M. Cannabinoid and Serotonergic Systems: Unraveling the Pathogenetic Mechanisms of Stress-Induced Analgesia. Biomedicines. 2024; 12(1): 235. [DOI:10.3390/biomedicines12010235]
65. Korzeniewska I, Płaźnik A. Influence of serotonergic drugs on restraint stress induced analgesia. Polish Journal of Pharmacology. 1995; 47(5): 381-5.
66. Azimi M, Barati Dowom P, Abdal K, Darvishi M. Role of the Cannabinoid System in the Limbic System. The Neuroscience Journal of Shefaye Khatam. 2018; 6(1): 61-72. [DOI:10.29252/shefa.6.1.61]
67. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005; 435(7045): 1108-12. [DOI:10.1038/nature03658]
68. Atwal N, Winters BL, Vaughan CW. Endogenous cannabinoid modulation of restraint stress‐induced analgesia in thermal nociception. Journal of neurochemistry. 2020; 152(1): 92-102. [DOI:10.1111/jnc.14884]
69. Valverde O, Ledent C, Beslot F, Parmentier M, Roques BP. Reduction of stress‐induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors. European Journal of Neuroscience. 2000; 12(2): 533-9. [DOI:10.1046/j.1460-9568.2000.00929.x]
70. Nazari-Serenjeh F, Azizbeigi R, Rashvand M, Mesgar S, Amirteymori H, Haghparast A. Distinct roles for orexin-1 and orexin-2 receptors in the dentate gyrus of the hippocampus in the methamphetamine-seeking behavior in the rats. Life Science. 2023; 312: 121262. [DOI:10.1016/j.lfs.2022.121262]
71. Haghparast A, Fatahi Z, Arezoomandan R, Karimi S, Taslimi Z, Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. Progress in Brain Research. 2017; 235: 139-54. [DOI:10.1016/bs.pbr.2017.08.005]
72. Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing research reviews. 2015; 20: 63-73. [DOI:10.1016/j.arr.2014.11.001]
73. Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder. Brain sciences. 2020; 10(4): 226. [DOI:10.3390/brainsci10040226]
74. Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain. 2001; 92(1-2): 81-90. [DOI:10.1016/S0304-3959(00)00470-X]
75. Sadeghi M, Zareie F, Gholami M, Nazari-Serenjeh F, Ghalandari-Shamami M, Haghparast A. Contribution of the intra-hippocampal orexin system in the regulation of restraint stress response to pain-related behaviors in the formalin test. Behavioural Pharmacology. 2024; 35(2/3): 103-13. [DOI:10.1097/FBP.0000000000000755]
76. Askari K, Oryan S, Eidi A, Zaringhalam J, Haghparast A. Modulatory role of the orexin system in stress‐induced analgesia: Involvement of the ventral tegmental area. European Journal of Pain. 2021; 25(10): 2266-77. [DOI:10.1002/ejp.1840]
77. Lee HJ, Chang LY, Ho YC, Teng SF, Hwang LL, Mackie K, et al. Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray. Neuropharmacology. 2016; 105: 577-86. [DOI:10.1016/j.neuropharm.2016.02.018]
78. Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Haghparast A. Antagonism of orexin-1 receptors attenuates swim-and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacology Biochemistry and Behavior. 2012; 103(2): 299-307. [DOI:10.1016/j.pbb.2012.08.007]
79. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport. 2005; 16(1): 5-8. [DOI:10.1097/00001756-200501190-00002]
80. Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochemical Pharmacology. 2018; 157: 43-50. [DOI:10.1016/j.bcp.2018.08.040]
81. Bodnar RJ, Glusman M, Brutus M, Spiaggia A, Kelly DD. Analgesia induced by cold-water stress: attenuation following hypophysectomy. Physiology & behavior. 1979; 23(1): 53-62. [DOI:10.1016/0031-9384(79)90122-7]
82. Mousa S, Miller CH, Couri D. Corticosteroid modulation and stress-induced analgesia in rats. Neuroendocrinology. 1981; 33(5): 317-9. [DOI:10.1159/000123252]
83. Cecconello AL, Torres IL, Oliveira C, Zanini P, Niches G, Ribeiro MFM. DHEA administration modulates stress-induced analgesia in rats. Physiology & Behavior. 2016; 157: 231-6. [DOI:10.1016/j.physbeh.2016.02.004]
84. Fukuda T, Nishimoto C, Miyabe M, Toyooka H. Unilateral adrenalectomy attenuates hemorrhagic shock-induced analgesia in rats. Journal of anesthesia. 2007; 21(3): 348-53. [DOI:10.1007/s00540-007-0521-2]
85. Wang X, Bai H, Li X, Zhang L, Li F, Bai Y, et al. Corticotropin‐releasing factor is involved in acute stress‐induced analgesia and antipruritus. Brain and Behavior. 2022; 12(11): e2783. [DOI:10.1002/brb3.2783]
86. Aloisi AM, Buonocore M, Merlo L, Galandra C, Sotgiu A, Bacchella L, et al. Chronic pain therapy and hypothalamic-pituitary-adrenal axis impairment. Psychoneuroendocrinology. 2011; 36(7): 1032-9. [DOI:10.1016/j.psyneuen.2010.12.017]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nazari-Srenjeh F, ghasemzadeh Z. Brain Regions and Neurotransmitter Systems Involved in Stress-Induced Analgesia. Shefaye Khatam 2024; 13 (1) :104-115
URL: http://shefayekhatam.ir/article-1-2517-fa.html

نظری سرنجه فرزانه، قاسم زاده زهرا. نواحی مغزی و سیستم‌های نوروترانسمیتری دخیل در بی دردی القاء شده توسط استرس. مجله علوم اعصاب شفای خاتم. 1403; 13 (1) :104-115

URL: http://shefayekhatam.ir/article-1-2517-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 1 - ( زمستان 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.08 seconds with 51 queries by YEKTAWEB 4710