[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 13، شماره 1 - ( زمستان 1403 ) ::
دوره 13 شماره 1 صفحات 103-87 برگشت به فهرست نسخه ها
تأثیر آستاگزانتین بر درمان ضایعات و بیماری‌های عصبی
بهنام بختیاری مقدم* ، صادق شیریان ، کیمیا صفرمشائی
گروه بهداشت و کنترل کیفیت مواد غذایی، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران ، behnam2373@gmail.com
چکیده:   (431 مشاهده)
مقدمه: بیماری‌های عصبی از جمله آسیب مغزی، سرطان‌ها و بیماری‌های تخریب‌کننده عصبی (NDDs)، از علل اصلی ناتوانی در سراسر جهان به‌ویژه در میان سالمندان هستند. NDD ها گروه ناهمگنی از اختلالات را نشان می‌دهند که با تجمع پروتئین پاتولوژیک، اختلال عملکرد شبکه سیناپسی و عصبی، اختلال در پروتئوستاز، ناهنجاری‌های اسکلت سلولی، هموستاز انرژی تغییر یافته، نقص DNA و RNA، التهاب و مرگ سلول‌های عصبی مشخص می‌شوند. یکی از ویژگی‌های کلیدی NDD‌ها استرس اکسیداتیو (OS) است که به واسطه تولید بیش از حد گونه‌های اکسیژن فعال ایجاد می‌شود. آنتی اکسیدان‌ها نقش مهمی در کاهش OS و کاهش علائم بیماری‌های عصبی دارند. آستاگزانتین، یک آنتی اکسیدان قوی، به دلیل پتانسیل درمانی آن توجه را به خود جلب کرده است. آستاگزانتین که از نظر شیمیایی به‌عنوان یک کاروتنوئید زانتوفیل (C40H52O4) طبقه‌بندی می‌شود، طیف وسیعی از فعالیت‌های بیولوژیکی از جمله آنتی اکسیدان، ترمیم DNA، تحمل استرس، محافظت کننده عصبی، ضد التهاب، ضد آپوپتوز، ضد تکثیر، ضد دیابت، ضد سرطان و اثرات محافظتی پوست را نشان می‌دهد. آستاگزانتین با هدف قرار دادن سه مسیر کلیدی درگیر در تخریب عصبی- OS، التهاب و آپوپتوز- ممکن است به پیشگیری، کاهش علائم و درمان بیماری‌های عصبی کمک کند. نتیجه‌گیری: با توجه به پتانسیل درمانی قابل توجه آن، این بررسی اثرات آستاگزانتین را بر اختلالات عصبی خلاصه می‌کند و نقش آن را در محافظت عصبی و مدیریت بیماری برجسته می‌کند.
 
واژه‌های کلیدی: بیماری آلزایمر، بیماری‌های تحلیل برنده عصبی، بیماری پارکینسون
متن کامل [PDF 1285 kb]   (151 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: تحقیقات پایه در علوم اعصاب
فهرست منابع
1. Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, Shirian S. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. International Journal of Biological Macromolecules. 2021; 182: 82-90. [DOI:10.1016/j.ijbiomac.2021.03.106]
2. Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. Journal of Experimental & Clinical Cancer Research. 2016; 35: 1-11. [DOI:10.1186/s13046-016-0444-6]
3. Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi-Barough S, Gholami L, Parsamanesh G, et al. The effect of collagen and fibrin hydrogels encapsulated with adipose tissue mesenchymal stem cell-derived exosomes for treatment of spinal cord injury in a rat model. Iranian Journal of Biotechnology. 2023; 21(3): e3505.
4. Duveau A, Bertin E, Boué-Grabot E. Implication of neuronal versus microglial P2X4 receptors in central nervous system disorders. Neuroscience Bulletin. 2020; 36(11): 1327-43. [DOI:10.1007/s12264-020-00570-y]
5. Jafarimanesh MA, Ai J, Shojaei S, Khonakdar HA, Darbemamieh G, Shirian S. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Progress in Biomaterials. 2023; 12(2): 75-86. [DOI:10.1007/s40204-022-00209-3]
6. Shao J, Wang J, Li B, Liu C. Potential roles of telomeres and telomerase in neurodegenerative diseases. Ageing and Neurodegenerative Diseases. 2024: 19;4(1): N-A. [DOI:10.20517/and.2023.41]
7. Javdani M, Habibi A, Shirian S, Kojouri GA, Hosseini F. Effect of selenium nanoparticle supplementation on tissue inflammation, blood cell count, and IGF-1 levels in spinal cord injury-induced rats. Biological trace element research. 2019; 187: 202-211. [DOI:10.1007/s12011-018-1371-5]
8. Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, et al. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences. 2019; 30(4): 339-358. [DOI:10.1515/revneuro-2016-0035]
9. Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Molecules and Cells. 2024: 100089. [DOI:10.1016/j.mocell.2024.100089]
10. Adhikari R. Characterizing the physicochemical properties of TDP-43 protein and acetylated amyloid β peptides to discern its role in neurodegenerative diseases: Michigan Technological University; 2019.
11. Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sciences. 2022; 306: 120855. [DOI:10.1016/j.lfs.2022.120855]
12. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International journal of molecular sciences. 2022; 23(13): 7273. [DOI:10.3390/ijms23137273]
13. Jahromi HK, Farzin A, Hasanzadeh E, Barough SE, Mahmoodi N, Najafabadi MR, et al. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing schwann cells and curcumin encapsulated chitosan nanoparticles in rat. Materials Science and Engineering: C. 2020; 109: 110564. [DOI:10.1016/j.msec.2019.110564]
14. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants & redox signaling. 2014; 21(1): 66-85. [DOI:10.1089/ars.2014.5837]
15. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry. 2021; 209: 112891. [DOI:10.1016/j.ejmech.2020.112891]
16. Singh S, Chib S, Akhtar MJ, Kumar B, Chawla PA, Bhatia R. Paradigms and success stories of natural products in drug discovery against neurodegenerative disorders (NDDs). Current Neuropharmacology. 2024; 22(6): 992-1015. [DOI:10.2174/1570159X21666230105110834]
17. Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural products as modulators of Nrf2 signaling pathway in neuroprotection. International Journal of Molecular Sciences. 2023; 24(4): 3748. [DOI:10.3390/ijms24043748]
18. Leuci R, Brunetti L, Laghezza A, Tortorella P, Loiodice F, Piemontese L. A review of recent patents (2016-2019) on plant food supplements with potential application in the treatment of neurodegenerative and metabolic Disorders. Recent patents on food, nutrition & agriculture. 2020; 11(2): 145-53. [DOI:10.2174/2212798411666200313145824]
19. Ha NC, Hong DD. Optimazation oF Cultural Conditions for omega 3-6 fatty acids and carotenoids production. Journal of Biology/TẠp chí Sinh HỌc. 2022; 44(1). [DOI:10.15625/2615-9023/16208]
20. Lee C-C. Astaxanthin: sources, properties and benefits. Handbook of Food Bioactive Ingredients: Properties and Applications: Springer; 2023; p. 687-727. [DOI:10.1007/978-3-031-28109-9_54]
21. Salami M, Salami R, Aarabi M-H, Mafi A, Ghorbanhosseini SS, Shafabakhsh R, et al. Targeting glioma cells with nutraceuticals: therapeutic effects based on molecular mechanisms, new evidence and perspectives. Mini Reviews in Medicinal Chemistry. 2023; 23(11): 1167-1192. [DOI:10.2174/1389557522666220531151137]
22. Pereira FCRM. Bioactive effects of selected marine-derived compounds on breast cancer cell lines: universidade do porto (Portugal); 2023.
23. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NM, et al. HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard. Data in brief. 2017; 10: 583-586. [DOI:10.1016/j.dib.2016.12.047]
24. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NM, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of biotechnology. 2017; 241: 175-83. [DOI:10.1016/j.jbiotec.2016.11.026]
25. Panis G, Carreon JR. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal research. 2016; 18: 175-90. [DOI:10.1016/j.algal.2016.06.007]
26. Snell TW, Carberry J. Astaxanthin bioactivity is determined by stereoisomer composition and extraction method. Nutrients. 2022; 14(7): 1522. [DOI:10.3390/nu14071522]
27. Nair A, Ahirwar A, Singh S, Lodhi R, Lodhi A, Rai A, et al. Astaxanthin as a king of ketocarotenoids: structure, synthesis, accumulation, bioavailability and antioxidant properties. Marine drugs. 2023; 21(3): 176. [DOI:10.3390/md21030176]
28. Gholamzadeh MJ, Hooshmandi E, Ghahramani Z, Fereidooni R, Rezvani A, Vasaghi-Gharamaleki M, et al. The evaluation of complete blood count parameters in the patients with idiopathic versus secondary cerebral venous thrombosis. Current Journal of Neurology. 2024. [DOI:10.18502/cjn.v23i2.16838]
29. Alcaíno J, Baeza M, Cifuentes V. Carotenoid distribution in nature. Carotenoids in nature: biosynthesis, regulation and function. 2016: 3-33. [DOI:10.1007/978-3-319-39126-7_1]
30. Mazumder A, Prabuthas P, Giri A, Mishra H. Major food grade pigments from microalgae and their health benefits A review. Indian Food Industry Magazine. 2014; 33: 19-30.
31. Barros MP, Poppe SC, Bondan EF. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients. 2014; 6(3): 1293-1317. [DOI:10.3390/nu6031293]
32. Wei N, Zhang L-m, Xu J-J, Li S-l, Xue R, Ma S-l, et al. Astaxanthin Rescues memory impairments in rats with vascular dementia by protecting against neuronal death in the hippocampus. NeuroMolecular Medicine. 2024; 26(1): 29. [DOI:10.1007/s12017-024-08796-z]
33. Čapek J, Roušar T. Detection of oxidative stress induced by nanomaterials in cells-the roles of reactive oxygen species and glutathione. Molecules. 2021; 26(16): 4710. [DOI:10.3390/molecules26164710]
34. Krumova K, Cosa G. Singlet oxygen: applications in biosciences and nanosciences: chapter1, overview of reactive oxygen species. 2016. [DOI:10.1039/9781782622208-00001]
35. Ahmed OM, Mohammed MT. Oxidative stress: The role of reactive oxygen species (ROS) and antioxidants in human diseases. Plant Arch. 2020; 20(2): 4089-4095.
36. Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? Advances in mitochondrial medicine. 2012: 93-136. [DOI:10.1007/978-94-007-2869-1_5]
37. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International journal of molecular sciences. 2017; 18(1): 120. [DOI:10.3390/ijms18010120]
38. Hernansanz-Agustín P, Enríquez JA. Generation of reactive oxygen species by mitochondria. Antioxidants. 2021; 10(3): 415. [DOI:10.3390/antiox10030415]
39. Kakkar P, Singh B. Mitochondria: a hub of redox activities and cellular distress control. Molecular and cellular biochemistry. 2007; 305: 235-253. [DOI:10.1007/s11010-007-9520-8]
40. Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladâcenco O, Roza E, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. International journal of molecular sciences. 2022; 23(11): 5938. [DOI:10.3390/ijms23115938]
41. Bhaduri AM, Fulekar M. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/Technology. 2012; 11: 55-69. [DOI:10.1007/s11157-011-9251-x]
42. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International journal of molecular sciences. 2021; 22(9): 4642. [DOI:10.3390/ijms22094642]
43. Schönfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? -Reflections on disadvantages of the use of free fatty acids as fuel for brain. Journal of Cerebral Blood Flow & Metabolism. 2013; 33(10): 1493-9. [DOI:10.1038/jcbfm.2013.128]
44. Jiang X, Zu L, Wang Z, Cheng Y, Yang Y, Wu X. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. Fish & shellfish immunology. 2020; 102: 499-510. [DOI:10.1016/j.fsi.2020.05.021]
45. Li T, Zheng P-H, Zhang X-X, Zhang Z-L, Li J-T, Li J-J, et al. Effects of dietary astaxanthin on growth performance, muscle composition, non-specific immunity, gene expression, and ammonia resistance of juvenile ivory shell (Babylonia areolate). Fish and Shellfish Immunology. 2024; 145: 109363. [DOI:10.1016/j.fsi.2024.109363]
46. Waterhouse AL, Gislason NE. From free radical scavengers to nucleophilic tone: a paradigm shift in nutraceutical effects of fruits and vegetables. 2019.
47. Okada Y, Ishikura M, Maoka T. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Bioscience, biotechnology, and biochemistry. 2009; 73(9): 1928-1932. [DOI:10.1271/bbb.90078]
48. Kurnia A, Satoh S, Kuramato D, Hanzawa S. Effect of different astaxanthin sources on skin pigmentation of red sea bream (Pagrus major). Aquaculture Science. 2007; 55(3): 441-447.
49. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany. 2012; 2012(1): 217037. [DOI:10.1155/2012/217037]
50. Galano A. Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry-based protocols. Journal of the Mexican Chemical Society. 2015; 59(4): 231-262. [DOI:10.29356/jmcs.v59i4.81]
51. Villa-Rivera MG, Ochoa-Alejo N. Chili pepper carotenoids: Nutraceutical properties and mechanisms of action. Molecules. 2020; 25(23): 5573. [DOI:10.3390/molecules25235573]
52. Afzali A, Amidi F, Koruji M, Nazari H, Gilani MAS, Sanjbad AS. Astaxanthin relieves busulfan-induced oxidative apoptosis in cultured human spermatogonial stem cells by activating the Nrf-2/HO-1 pathway. Reproductive Sciences. 2022; 29(2): 374-94. [DOI:10.1007/s43032-021-00651-x]
53. Zhou Q, Xu J, Yang L, Gu C, Xue C. Thermal stability and oral absorbability of astaxanthin esters from Haematococcus pluvialis in Balb/c mice. Journal of the Science of Food and Agriculture. 2019; 99(7): 3662-3671. [DOI:10.1002/jsfa.9588]
54. Geronikaki AA, Gavalas AM. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Combinatorial chemistry & high throughput screening. 2006; 9(6): 425-442. [DOI:10.2174/138620706777698481]
55. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants. 2019; 8(7): 235. [DOI:10.3390/antiox8070235]
56. Barros MP, Poppe SC, Bondan EF. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients. 2014; 6(3): 1293-317. [DOI:10.3390/nu6031293]
57. Jagruthi C, Yogeshwari G, Anbazahan SM, Mari LSS, Arockiaraj J, Mariappan P, et al. Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. Fish & shellfish immunology. 2014; 41(2): 674-80. [DOI:10.1016/j.fsi.2014.10.010]
58. Doshmanziari M, Shirian S, Kouchakian MR, Moniri SF, Jangnoo S, Mohammadi N, et al. Mesenchymal stem cells act as stimulators of neurogenesis and synaptic function in a rat model of Alzheimer's disease. Heliyon. 2021; 7(9). [DOI:10.1016/j.heliyon.2021.e07996]
59. Sherman JC, Henderson Jr CR, Flynn S, Gair JW, Lust B. Language decline characterizes amnestic mild cognitive impairment independent of cognitive decline. Journal of speech, language, and hearing research. 2021; 64(11): 4287-307. [DOI:10.1044/2021_JSLHR-20-00503]
60. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An Investigation into the effects of water-and fat-soluble vitamins in Alzheimer's and Parkinson's diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 95-109. [DOI:10.61186/shefa.11.3.95]
61. Cicognola C. Tau fragments: role as biomarkers and in the pathogenesis of Alzheimer's disease and other tauopathies. 2019.
62. Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food and chemical toxicology. 2020; 145: 111714. [DOI:10.1016/j.fct.2020.111714]
63. Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain research bulletin. 2023; 193: 11-21. [DOI:10.1016/j.brainresbull.2022.11.018]
64. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer's disease: therapeutic and diagnostic prospects. Oxidative medicine and cellular longevity. 2018; 2018(1): 6435861. [DOI:10.1155/2018/6435861]
65. Shahverdi Shahraki M, Sourani Z, Behdarvand F, Modarres Mousavi M, Shirian S. The potency of biomarkers for the diagnosis and treatment of Parkinson's disease and Alzheimer's disease. The Neuroscience Journal of Shefaye Khatam. 2022; 10(2): 91-103. [DOI:10.61186/shefa.10.2.91]
66. Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons. Journal of Alzheimer's disease. 2017; 57(4): 975-999. [DOI:10.3233/JAD-160612]
67. Grimmig B, Kim S-H, Nash K, Bickford PC, Douglas Shytle R. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience. 2017; 39: 19-32. [DOI:10.1007/s11357-017-9958-x]
68. Grimmig B. Astaxanthin attenuates MPTP induced neurotoxicity and modulates cognitive function in aged mice. 2017. University of South Florida.
69. Xiong Z, Li Z, Sima X, Zeng Z. Astaxanthin reduces TBPH-induced neurobehavioral deficits in mice by the ROS-ERK1/2-FOS pathway. Ecotoxicology and environmental safety. 2024; 281: 116674. [DOI:10.1016/j.ecoenv.2024.116674]
70. Wu H, Niu H, Shao A, Wu C, Dixon BJ, Zhang J, et al. Astaxanthin as a potential neuroprotective agent for Neurological Diseases. Marine drugs. 2015; 13(9): 5750-5766. [DOI:10.3390/md13095750]
71. Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Molecular Neurobiology. 2016; 53: 5278-87. [DOI:10.1007/s12035-015-9442-5]
72. Buccilli B, Sahab-Negah S, Shirian S, Gorji A, Ghadiri MK, Ascenzi BM. The telencephalon: Amygdala and claustrum. InFrom anatomy to function of the central nervous system 2025 (pp. 429-451). Academic Press. [DOI:10.1016/B978-0-12-822404-5.00006-1]
73. Galasso C, Orefice I, Pellone P, Cirino P, Miele R, Ianora A, et al. On the neuroprotective role of astaxanthin: new perspectives? Marine drugs. 2018; 16(8): 247. [DOI:10.3390/md16080247]
74. Bahbah EI, Ghozy S, Attia MS, Negida A, Emran TB, Mitra S, et al. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Marine drugs. 2021; 19(4): 201. [DOI:10.3390/md19040201]
75. Che H, Li Q, Zhang T, Wang D, Yang L, Xu J, et al. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer's disease in APP/PS1 double-transgenic mice. Journal of agricultural and food chemistry. 2018; 66(19): 4948-4957. [DOI:10.1021/acs.jafc.8b00988]
76. Wang S, Qi X. The putative role of astaxanthin in neuroinflammation modulation: Mechanisms and therapeutic potential. Frontiers in Pharmacology. 2022; 13: 916653. [DOI:10.3389/fphar.2022.916653]
77. Sorrenti V, Davinelli S, Scapagnini G, Willcox BJ, Allsopp RC, Willcox DC. Astaxanthin as a putative geroprotector: Molecular basis and focus on brain aging. Marine Drugs. 2020; 18(7): 351. [DOI:10.3390/md18070351]
78. Alam MN, Hossain MM, Rahman MM, Subhan N, Mamun MAA, Ulla A, et al. Astaxanthin prevented oxidative stress in heart and kidneys of isoproterenol-administered aged rats. Journal of dietary supplements. 2018; 15(1): 42-54. [DOI:10.1080/19390211.2017.1321078]
79. Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from marine sources as a new approach in neuroplasticity enhancement. International Journal of Molecular Sciences. 2022; 23(4): 1990. [DOI:10.3390/ijms23041990]
80. Park SK, Kang JY, Kim JM, Kim MJ, Lee HL, Moon JH, et al. Porphyra tenera protects against PM2. 5-induced cognitive dysfunction with the regulation of gut function. Marine Drugs. 2022; 20(7): 439. [DOI:10.3390/md20070439]
81. Lobos P, Bruna B, Cordova A, Barattini P, Galáz JL, Adasme T, et al. Astaxanthin protects primary hippocampal neurons against noxious effects of Aβ‐oligomers. Neural plasticity. 2016; 2016(1): 3456783. [DOI:10.1155/2016/3456783]
82. Chan Kc, Mong Mc, Yin Mc. Antioxidative and anti‐inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12 cells. Journal of food Science. 2009; 74(7): H225-H31. [DOI:10.1111/j.1750-3841.2009.01274.x]
83. Wang H-Q, Sun X-B, Xu Y-X, Zhao H, Zhu Q-Y, Zhu C-Q. Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain research. 2010; 1360: 159-67. [DOI:10.1016/j.brainres.2010.08.100]
84. Fakhri S, Yosifova Aneva I, Farzaei MH, Sobarzo-Sánchez E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules. 2019; 24(14): 2640. [DOI:10.3390/molecules24142640]
85. Mandal PK, Saharan S, Tripathi M, Murari G. Brain glutathione levels-a novel biomarker for mild cognitive impairment and Alzheimer's disease. Biological psychiatry. 2015; 78(10): 702-710. [DOI:10.1016/j.biopsych.2015.04.005]
86. Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial damage-associated molecular patterns content in extracellular vesicles promotes early inflammation in neurodegenerative disorders. Cells. 2022; 11(15): 2364. [DOI:10.3390/cells11152364]
87. Wiedenhoeft T, Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Balasubramanian P, et al. Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice. Geroscience. 2019; 41: 711-725. [DOI:10.1007/s11357-019-00102-1]
88. Bloem BR, Okun MS, Klein C. Parkinson's disease. The Lancet. 2021; 397(10291): 2284-2303. [DOI:10.1016/S0140-6736(21)00218-X]
89. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Movement disorders: official journal of the movement disorder society. 2007; 22(12): 1689-707. [DOI:10.1002/mds.21507]
90. Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease. International journal of molecular medicine. 2018; 41(4): 1817-25. [DOI:10.3892/ijmm.2018.3406]
91. Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Annals of the New York academy of sciences. 2008; 1147(1): 93-104. [DOI:10.1196/annals.1427.023]
92. Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Frontiers in pharmacology. 2014; 5: 38. [DOI:10.3389/fphar.2014.00038]
93. Agrawal A, Sharma B. Pesticides induced oxidative stress in mammalian systems. International journal of biological medicine research. 2010; 1(3): 90-104.
94. Gangemi S, Gofita E, Costa C, Teodoro M, Briguglio G, Nikitovic D, et al. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases. International Journal of Molecular Medicine. 2016; 38(4): 1012-20. [DOI:10.3892/ijmm.2016.2728]
95. Zhang X-S, Zhang X, Wu Q, Li W, Wang C-X, Xie G-B, et al. Astaxanthin offers neuroprotection and reduces Neuroinflammation in experimental Subarachnoid Hemorrhage. Journal of Surgical Research. 2014; 192(1): 206-213. [DOI:10.1016/j.jss.2014.05.029]
96. Bjørklund G, Gasmi A, Lenchyk L, Shanaida M, Zafar S, Mujawdiya PK, et al. The role of astaxanthin as a nutraceutical in health and age-related conditions. Molecules. 2022; 27(21): 7167. [DOI:10.3390/molecules27217167]
97. Zhang Y, Wang W, Hao C, Mao X, Zhang L. Astaxanthin protects PC12 cells from glutamate-induced neurotoxicity through multiple signaling pathways. Journal of Functional Foods. 2015; 16: 137-151. [DOI:10.1016/j.jff.2015.04.008]
98. Küçüködük A, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G, et al. Antiproliferative and anti-apoptotic effect of astaxanthin in an oxygen-induced retinopathy mouse model. Canadian Journal of Ophthalmology. 2019; 54(1): 65-74. [DOI:10.1016/j.jcjo.2018.02.017]
99. Wang L, Lu K, Lou X, Zhang S, Song W, Li R, et al. Astaxanthin ameliorates dopaminergic neuron damage in paraquat-induced SH-SY5Y cells and mouse models of Parkinson's Disease. Brain Research Bulletin. 2023; 202: 110762. [DOI:10.1016/j.brainresbull.2023.110762]
100. Bastías-Candia S, Zolezzi JM, Inestrosa NC. Revisiting the paraquat-induced sporadic Parkinson's disease-like model. Molecular Neurobiology. 2019; 56(2): 1044-1055. [DOI:10.1007/s12035-018-1148-z]
101. Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson's disease: The therapeutic role of Nrf2 activators. Neurochemistry international. 2021; 145: 105014. [DOI:10.1016/j.neuint.2021.105014]
102. Grimmig B, Daly L, Hudson C, Nash K, Bickford P. Astaxanthin attenuates neurotoxicity in a mouse model of Parkinson's disease. Functional foods in health and disease. 2017; 7(8): 562-576. [DOI:10.31989/ffhd.v7i8.352]
103. Kowshik J, Nivetha R, Ranjani S, Venkatesan P, Selvamuthukumar S, Veeravarmal V, et al. Astaxanthin inhibits hallmarks of cancer by targeting the PI3K/NF‐κΒ/STAT3 signalling axis in oral squamous cell carcinoma models. IUBMB life. 2019; 71(10): 1595-1610. [DOI:10.1002/iub.2104]
104. Ye Q, Huang B, Zhang X, Zhu Y, Chen X. Astaxanthin protects against MPP+-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neuroscience. 2012; 13: 1-13. [DOI:10.1186/1471-2202-13-156]
105. Ye Q, Zhang X, Huang B, Zhu Y, Chen X. Astaxanthin suppresses MPP+-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Marine drugs. 2013; 11(4): 1019-34. [DOI:10.3390/md11041019]
106. Lee D-H, Kim C-S, Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food and chemical toxicology. 2011; 49(1): 271-280. [DOI:10.1016/j.fct.2010.10.029]
107. Liu X, Shibata T, Hisaka S, Osawa T. Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain research. 2009; 1254: 18-27. [DOI:10.1016/j.brainres.2008.11.076]
108. Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T. Protective effects of astaxanthin on 6‐hydroxydopamine‐induced apoptosis in human neuroblastoma SH‐SY5Y cells. Journal of Neurochemistry. 2008; 107(6): 1730-40. [DOI:10.1111/j.1471-4159.2008.05743.x]
109. Bertolaso M. A System Approach to Cancer. From things to relations. Philosophy of Systems Biology: Perspectives from Scientists and Philosophers. 2017: 37-47. [DOI:10.1007/978-3-319-47000-9_3]
110. Hollstein M, Alexandrov L, Wild C, Ardin M, Zavadil J. Base changes in tumour DNA have the Power to Reveal the Causes and Evolution of Cancer. Oncogene. 2017; 36(2): 158-167. [DOI:10.1038/onc.2016.192]
111. Stefani C, Miricescu D, Stanescu-Spinu I-I, Nica RI, Greabu M, Totan AR, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? International Journal of Molecular Sciences. 2021; 22(19): 10260. [DOI:10.3390/ijms221910260]
112. Vasudevan S, Venkataraman A. Liposome encapsulated astaxanthin altered biochemical profile in diethylnitrosamine (DEN) induced hepato carcinoma on Swiss Albino Mice. International Journal of Pharmaceutical Sciences and Drug Research. 2020: 344-352. [DOI:10.25004/IJPSDR.2020.120406]
113. Zhai K, Siddiqui M, Abdellatif B, Liskova A, Kubatka P, Büsselberg D. Natural compounds in glioblastoma therapy: Preclinical Insights, Mechanistic Pathways, and outlook. Cancers. 2021; 13(10): 2317. [DOI:10.3390/cancers13102317]
114. Faraone I, Sinisgalli C, Ostuni A, Armentano MF, Carmosino M, Milella L, et al. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A Systematic Review. Pharmacological Research. 2020; 155: 104689. [DOI:10.1016/j.phrs.2020.104689]
115. Zhang L, Wang H. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Marine Drugs. 2015; 13(7): 4310-4330. [DOI:10.3390/md13074310]
116. Wu Q, Zhang X-S, Wang H-D, Zhang X, Yu Q, Li W, et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Marine Drugs. 2014; 12(12): 6125-6141. [DOI:10.3390/md12126125]
117. Zhang X, Lu Y, Wu Q, Dai H, Li W, Lv S, et al. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll‐like receptor 4 signaling pathway. The FASEB Journal. 2019; 33(1): 722-737. [DOI:10.1096/fj.201800642RR]
118. Lu Y-P, Liu S-Y, Sun H, Wu X-M, Li J-J, Zhu L. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Research. 2010; 1360: 40-48. [DOI:10.1016/j.brainres.2010.09.016]
119. Manabe Y, Komatsu T, Seki S, Sugawara T. Dietary astaxanthin can accumulate in the brain of rats. Bioscience, Biotechnology, and Biochemistry. 2018; 82(8): 1433-1436. [DOI:10.1080/09168451.2018.1459467]
120. Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N, et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food & function. 2014; 5(1): 158-166. [DOI:10.1039/C3FO60400D]
121. Cullen DK, Simon CM, LaPlaca MC. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Research. 2007; 1158: 103-115. [DOI:10.1016/j.brainres.2007.04.070]
122. Ahmed S, Reynolds BA, Weiss S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. Journal of Neuroscience. 1995; 15(8): 5765-5778. [DOI:10.1523/JNEUROSCI.15-08-05765.1995]
123. Cao Y, Yang L, Qiao X, Xue C, Xu J. Dietary astaxanthin: an excellent carotenoid with multiple health benefits. Critical Reviews in Food Science and Nutrition. 2023; 63(18): 3019-3045. [DOI:10.1080/10408398.2021.1983766]
124. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, et al. FOXO3A genotype is strongly associated with human longevity. Proceedings of the National Academy of Sciences. 2008; 105(37): 13987-13992. [DOI:10.1073/pnas.0801030105]
125. Morris BJ, Willcox DC, Donlon TA, Willcox BJ. FOXO3: a major gene for human longevity-a mini-review. Gerontology. 2015; 61(6): 515-525. [DOI:10.1159/000375235]
126. Bayat N, Ebrahimi-Barough S, Norouzi-Javidan A, Saberi H, Tajerian R, Ardakan MM, et al. Apoptotic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel. Biomedicine & Pharmacotherapy. 2016; 84: 1959-1966. [DOI:10.1016/j.biopha.2016.11.003]
127. Hoffman R, Sultan LD, Saada A, Hirschberg J, Osterzetser-Biran O, Gruenbaum Y. Astaxanthin extends lifespan via altered biogenesis of the mitochondrial respiratory chain complex III. Biorxiv. 2019; 698001. [DOI:10.1101/698001]
128. Siangcham T, Vivithanaporn P, Sangpairoj K. Anti-migration and invasion effects of astaxanthin against A172 human glioblastoma cell line. Asian pacific journal of cancer prevention: Asian Pacific Journal of Cancer Prevention. 2020; 21(7): 2029. [DOI:10.31557/APJCP.2020.21.7.2029]
129. Tsuji S, Nakamura S, Maoka T, Yamada T, Imai T, Ohba T, et al. Antitumour effects of astaxanthin and adonixanthin on glioblastoma. Marine drugs. 2020; 18(9): 474. [DOI:10.3390/md18090474]
130. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta (BBA)-molecular cell research. 2007; 1773(8): 1263-1284. [DOI:10.1016/j.bbamcr.2006.10.001]
131. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017; 9(5): 52. [DOI:10.3390/cancers9050052]
132. Wu W-S, Wu J-R, Hu C-T. Signal cross talks for sustained MAPK activation and cell migration: The Potential role of reactive oxygen species. Cancer and Metastasis Reviews. 2008; 27: 303-214. [DOI:10.1007/s10555-008-9112-4]
133. Jhou B-Y, Song T-Y, Lee I, Hu M-L, Yang N-C. Lycopene inhibits metastasis of human liver adenocarcinoma SK-Hep-1 cells by downregulation of NADPH oxidase 4 protein expression. Journal of Agricultural and Food Chemistry. 2017; 65(32): 6893-903. [DOI:10.1021/acs.jafc.7b03036]
134. Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research. 2018; 136: 1-20. [DOI:10.1016/j.phrs.2018.08.012]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bakhtiari Moghadam B, Shirian S, Safar Mashaie K. The Effect of Astaxanthin on the Treatment of Neurological Diseases and Lesions. Shefaye Khatam 2024; 13 (1) :87-103
URL: http://shefayekhatam.ir/article-1-2518-fa.html

بختیاری مقدم بهنام، شیریان صادق، صفرمشائی کیمیا. تأثیر آستاگزانتین بر درمان ضایعات و بیماری‌های عصبی. مجله علوم اعصاب شفای خاتم. 1403; 13 (1) :87-103

URL: http://shefayekhatam.ir/article-1-2518-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 1 - ( زمستان 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 51 queries by YEKTAWEB 4710