[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 13, Issue 2 (Spring 2025) ::
Shefaye Khatam 2025, 13(2): 115-130 Back to browse issues page
The Effect of Stimuli-Responsive Smart Nanoparticles in the Treatment of Central Nervous System Tumors
Azadeh Mohammadgholi *
Department of Biology, CT.C, Islamic Azad University, Tehran, Iran , Azadeh.mohammadgholi57@iau.ac.ir
Abstract:   (235 Views)
Introduction: In recent years, significant advances have been made in nanotechnology and medicine, particularly in the treatment of nervous system tumors such as glioblastoma. Glioblastoma, as the most common and aggressive brain tumor, with an average survival of less than 15 months, has created serious challenges for current treatments, such as surgery and chemotherapy. Smart nanoparticles (SNs), a new generation of nanoparticles with the ability to cross the blood-brain barrier and selectively target tumor cells, have provided new hope to overcome these challenges. SNs can release drugs in a controlled manner in response to specific stimuli such as changes in pH or temperature, which increases the effectiveness of treatment and reduces side effects. SNs have various applications in the treatment of nervous system tumors and can significantly improve the effectiveness of chemotherapy drugs. Despite the remarkable successes, challenges such as the safety and toxicity of nanoparticles and scaling mass production difficulties still exist. However, technological advances can help solve these issues. Finally, SNs are recognized as a powerful tool in the treatment of central nervous system tumors and can play an important role in improving treatment methods. Conclusion: Considering its significant therapeutic potential, this review summarizes the effects of stimuli-responsive SNs and highlights their role in the treatment of central nervous system tumors.
 
Keywords: Multifunctional Nanoparticles, Brain Neoplasms, Glioblastoma, Glioma
Full-Text [PDF 1882 kb]   (66 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neuropharmacology
References
1. Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, et al. Frontiers in the treatment of glioblastoma: Past, present and emerging. Advanced drug delivery reviews. 2021; 171: 108-38. [DOI:10.1016/j.addr.2021.01.012]
2. Bakhtiari Moghadam B, Shirian S, Safar Mashaie K. The Effect of Astaxanthin on the Treatment of Neurological Diseases and Lesions. The Neuroscience Journal of Shefaye Khatam. 2024; 13(1): 87-103. [DOI:10.61186/shefa.13.1.87]
3. Gholamkhasi N, Asghari Moghaddam N, Mohammadgholi A. Diverse cytotoxic capability of silver nanoparticles against the normal and cancerous lymphocytes. International Journal of Advanced Biological and Biomedical Research. 2020; 8(4): 429-39.
4. Ahmad F, Varghese R, Panda S, Ramamoorthy S, Areeshi MY, Fagoonee S, Haque S. Smart nanoformulations for brain cancer theranostics: Challenges and promises. Cancers. 2022; 14(21): 5389. [DOI:10.3390/cancers14215389]
5. Khan MI, Hossain MI, Hossain MK, Rubel MH, Hossain KM, Mahfuz AM, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS applied bio materials. 2022; 5(3): 971-1012. [DOI:10.1021/acsabm.2c00002]
6. Naderi N, Mohammadgholi A, Moghaddam NA. Biosynthesis of Copper Oxide-Silver Nanoparticles from Ephedra Intermedia Extract and Study of Anticancer Effects in HepG2 Cell Line: Apoptosis-Related Genes Analysis and Nitric Oxide Level Investigations. International Journal of Molecular and Cellular Medicine. 2024; 13(3): 303.
7. Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of hematology & oncology. 2022; 15(1): 132. [DOI:10.1186/s13045-022-01320-5]
8. Li Z, Huang J, Wu J. PH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials Science. 2021; 9(3): 574-89. [DOI:10.1039/D0BM01729A]
9. Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis and Photodynamic Therapy. 2022; 39: 102915. [DOI:10.1016/j.pdpdt.2022.102915]
10. Safakheil M, Ramezani M, Mohammadgholi A. The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. Journal of Cellular Neuroscience and Oxidative Stress. 2023; 15(1): 1122-36.
11. Kenchegowda M, Rahamathulla M, Hani U, Begum MY, Guruswamy S, Osmani RA, et al. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules. 2021; 27(1): 146. [DOI:10.3390/molecules27010146]
12. Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy. 2017; 95: 1209-18. [DOI:10.1016/j.biopha.2017.09.059]
13. Feng Z, Zhao G, Yu L, Gough D, Howell SB. Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer chemotherapy and pharmacology. 2010; 65: 923-30. [DOI:10.1007/s00280-009-1099-1]
14. Torrisi L. Physical aspects of gold nanoparticles as cancer killer therapy. Indian Journal of Physics. 2021; 95: 225-34. [DOI:10.1007/s12648-019-01679-1]
15. Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, et al. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Advanced Science. 2022; 9(5): 2103444. [DOI:10.1002/advs.202103444]
16. Luo D, Wang X, Burda C, Basilion JP. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers. 2021; 13(8): 1825. [DOI:10.3390/cancers13081825]
17. Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, J et al. Micro‐nanocarriers based drug delivery technology for blood‐brain barrier crossing and brain tumor targeting therapy. Small. 2022; 18(45): 2203678. [DOI:10.1002/smll.202203678]
18. Ahmad A, Imran M, Sharma N. Precision nanotoxicology in drug development: current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics. 2022; 14(11): 2463. [DOI:10.3390/pharmaceutics14112463]
19. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal transduction and targeted therapy. 2023; 8(1): 418. [DOI:10.1038/s41392-023-01642-x]
20. Tamjid M, Ashrafiyan Nansa F, Golivand F, Bahari N, Wasman Smail S, Omar Khudhur Z. Use of Nanoparticles by Overcoming the Blood-Brain Barrier in the Treatment of Central Nervous System Diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 12(1): 85-93. [DOI:10.61186/shefa.12.1.85]
21. Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. Journal of drug delivery. 2013; 2013(1): 705265. [DOI:10.1155/2013/705265]
22. Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, et al. Blood‐brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small. 2014; 10(24): 5137-150. [DOI:10.1002/smll.201400654]
23. Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 2015; 37: 425-35. [DOI:10.1016/j.biomaterials.2014.10.007]
24. Zhao Y, Ren W, Zhong T, Zhang S, Huang D, Guo Y, et al. Tumor-specific PH-responsive peptide-modified PH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. Journal of Controlled Release. 2016; 222: 56-66. [DOI:10.1016/j.jconrel.2015.12.006]
25. Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, et al. Dual-functional liposomes based on PH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials. 2012; 33(36): 9246-258. [DOI:10.1016/j.biomaterials.2012.09.027]
26. Xu HL, Fan ZL, ZhuGe DL, Tong MQ, Shen BX, Lin MT, et al. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through PH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug delivery. 2018; 25(1): 1302-318. [DOI:10.1080/10717544.2018.1474974]
27. Montazeri A, Ramezani M, Mohammadgholi A. Investigation the Effect of Encapsulated Bromelain Enzyme in Magnetic Carbon Nanotubes on Colorectal Cancer Cells. Jundishapur Journal of Natural Pharmaceutical Products.2021; 16: e108796. [DOI:10.5812/jjnpp.108796]
28. Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Molecular biology reports. 2021; 48(9): 6525-38. [DOI:10.1007/s11033-021-06635-z]
29. Victor SP, Sharma CP. Poly methacrylic acid modified CDHA nanocomposites as potential PH responsive drug delivery vehicles. Colloids and Surfaces B: Biointerfaces. 2013; 108: 219-228. [DOI:10.1016/j.colsurfb.2013.02.025]
30. Zhao Z, Shen J, Zhang L, Wang L, Xu H, Han Y, et al. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomaterials Science. 2020; 8(19): 5306-316. [DOI:10.1039/D0BM00338G]
31. Qin L, Wang C.Z, Fan H.J, Zhang C.J, Zhang H.W, Lv M.H, et al. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for gliomatargeting therapy. Oncology Letters, 2014, 5, 2000-2006. [DOI:10.3892/ol.2014.2449]
32. Katz JL, Geng Y, Billingham LK, Sadagopan NS, DeLay SL, Subbiah J, et al. A covalent creatine kinase inhibitor ablates glioblastoma migration and sensitizes tumors to oxidative stress. Scientific reports. 2024; 14(1): 21959. [DOI:10.1038/s41598-024-73051-1]
33. Shao K, Zhang Y, Ding N, Huang S, Wu J, Li J, et al. Functionalized Nanoscale Micelles with Brain Targeting Ability and Intercellular Microenvironment Biosensitivity for Anti‐Intracranial Infection Applications. Advanced Healthcare Materials. 2015; 4(2): 291-300. [DOI:10.1002/adhm.201400214]
34. Stephen Z.R, Kievit F.M, Veiseh O, Chiarelli P.A, Fang C, Wang K. et al. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano Journal, 2014; 8(10): 10383-395. [DOI:10.1021/nn503735w]
35. Abraki SB, Chavoshi-Nezhad S. Mitochondrial defects and oxidative stress in Alzheimer disease. The Neuroscience Journal of Shefaye Khatam. 2014; 2(1): 85-94. [DOI:10.18869/acadpub.shefa.2.1.85]
36. Thomas RG, Surendran SP, Jeong YY. Tumor microenvironment-stimuli responsive nanoparticles for anticancer therapy. Frontiers in Molecular Biosciences. 2020; 7: 610533. [DOI:10.3389/fmolb.2020.610533]
37. Jia W, Zhang Y, Zhao Q, Gong M, Cao Y, Liu J, et al. Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2. Journal of Cancer. 2025; 16(1): 44. [DOI:10.7150/jca.95266]
38. Naz I, Ramchandani S, Khan MR, Yang MH, Ahn KS. Anticancer potential of raddeanin a, a natural triterpenoid isolated from anemone raddeana regel. Molecules. 2020; 25(5): 1035. [DOI:10.3390/molecules25051035]
39. Peng F, Wang X, Shu M, Yang M, Wang L, Ouyang Z, et al. Raddeanin A suppresses glioblastoma growth by inducing ROS generation and subsequent JNK activation to promote cell apoptosis. Cellular Physiology and Biochemistry. 2018; 47(3): 1108-121. [DOI:10.1159/000490187]
40. Vlaminck B, Toffoli S, Ghislain B, Demazy C, Raes M, Michiels C. Dual effect of echinomycin on hypoxia‐inducible factor‐1 activity under normoxic and hypoxic conditions. The FEBS journal. 2007; 274(21): 5533-542. [DOI:10.1111/j.1742-4658.2007.06072.x]
41. Tang JH, Ma ZX, Huang GH, Xu QF, Xiang Y, Li N, et al. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment. Experimental Cell Research. 2016; 343(2): 148-158. [DOI:10.1016/j.yexcr.2016.04.011]
42. Zhang P, Yang H, Shen W, Liu W, Chen L, Xiao C. Hypoxia-responsive polypeptide nanoparticles loaded with doxorubicin for breast cancer therapy. ACS Biomaterials Science & Engineering. 2020; 6(4): 2167-174. [DOI:10.1021/acsbiomaterials.0c00125]
43. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular cancer. 2019; 18: 1-15. [DOI:10.1186/s12943-019-1089-9]
44. Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS, et al. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. International journal of biological macromolecules. 2018; 15; 110: 399-405. [DOI:10.1016/j.ijbiomac.2017.11.048]
45. Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics, 2009; 71(3): 431-444. [DOI:10.1016/j.ejpb.2008.09.026]
46. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013; 12(11): 991-1003. [DOI:10.1038/nmat3776]
47. Zhang L, Dong W.F, Sun H.B. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale, 2013; 5(17): 7664-684. [DOI:10.1039/c3nr01616a]
48. Kong G, Dewhirst M.W. Hyperthermia and liposomes. International Journal of Hyperthermia., 1999; 15(5): 345-70. [DOI:10.1080/026567399285558]
49. Cui Y, Xu Q, Chow P.K, Wang D, Wang C.H. Transferrinconjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials, 2013; 34(33): 8511-520. [DOI:10.1016/j.biomaterials.2013.07.075]
50. Fang J.H, Lai Y.H, Chiu T.L, Chen Y.Y, Hu S.H, Chen S.Y. Magnetic core-shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv. Advanced Healthcare Materials, 2014; 3(8): 1250-260. [DOI:10.1002/adhm.201300598]
51. Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Advanced Drug Delivery Reviews Journal., 2012; 64(11): 1005-020. [DOI:10.1016/j.addr.2012.02.006]
52. Katz J.S, Burdick J.A. Light-responsive biomaterials: development and applications. Macromol. Bioscience, 2010; 10(4): 339348. [DOI:10.1002/mabi.200900297]
53. Oerlemans C, Bult W, Bos M, Storm G, Nijsen J.F, Hennink W.E. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharmaceutical Research, 2010; 27(12): 2569-589. [DOI:10.1007/s11095-010-0233-4]
54. Wang F, Shen Y, Zhang W, Li M, Wang Y, Zhou D, et al. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. Journal of Controlled Release, 2014; 196: 37-51. [DOI:10.1016/j.jconrel.2014.09.026]
55. Wang S, Xi W, Cai F, Zhao X, Xu Z, Qian J, et al. Threephoton luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics, 2015; 5(3): 251-266. [DOI:10.7150/thno.10396]
56. Agarwal A, Mackey M.A, El-Sayed M.A, Bellamkonda R.V. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano Journal, 2011; 5(6): 4919-926. [DOI:10.1021/nn201010q]
57. Wu D, Chen X, Zhou S, Li B. Reactive oxidative species (ROS)-based nanomedicine for BBB crossing and glioma treatment: current status and future directions. Frontiers in Immunology. 2023; 14: 1241791. [DOI:10.3389/fimmu.2023.1241791]
58. Shazeeb MS, Acosta MT, Tifft CJ. Role of neuroimaging in the diagnosis and treatment of rare diseases. Frontiers in Neuroimaging. 2025; 4: 1566484. [DOI:10.3389/fnimg.2025.1566484]
59. Yun B, Gu Z, Liu Z, Han Y, Sun Q, Li Z. Reducing chemo-/radioresistance to boost the therapeutic efficacy against temozolomide-resistant glioblastoma. ACS Applied Materials & Interfaces. 2022; 14(34): 38617-8630. [DOI:10.1021/acsami.2c12348]
60. Diss E, Nalabothula N, Nguyen D, Chang E, Kwok Y, Carrier F. VorinostatSAHA promotes hyper-radiosensitivity in wild type p53 human glioblastoma cells. Journal of clinical oncology and research. 2014; 2(1).
61. Everix L, Seane EN, Ebenhan T, Goethals I, Bolcaen J. Introducing HDAC-targeting radiopharmaceuticals for glioblastoma imaging and therapy. Pharmaceuticals. 2023; 16(2): 227. [DOI:10.3390/ph16020227]
62. Shirvalilou S, Khoei S, Khoee S, Mahdavi SR, Raoufi NJ, Motevalian M, et al. Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via PH-responsive magnetic graphene oxide nanocarrier. Journal of Photochemistry and Photobiology B: Biology. 2020; 205: 111827. [DOI:10.1016/j.jphotobiol.2020.111827]
63. Zheng Y, Wang L, Lu L, Wang Q, Benicewicz BC. PH and thermal dual-responsive nanoparticles for controlled drug delivery with high loading content. ACS Omega Journal. 2017; 2(7): 3399-405. [DOI:10.1021/acsomega.7b00367]
64. Patel P, Geed SR. Recent advancements in the application of nanomaterial in modern drug delivery and future perspective. InBiogenic nanomaterials for environmental sustainability: principles, practices, and opportunities 2024 (pp. 319-351). [DOI:10.1007/978-3-031-45956-6_13]
65. Lo Dico A, Salvatore D, Martelli C, Ronchi D, Diceglie C, Lucignani G, et al. Intracellular redox-balance involvement in temozolomide resistance-related molecular mechanisms in glioblastoma. Cells. 2019 Oct 24; 8(11): 1315. [DOI:10.3390/cells8111315]
66. Luo C, Sun J, Liu D, Sun B, Miao L, Musetti S, et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano letters. 2016; 16(9): 5401-418. [DOI:10.1021/acs.nanolett.6b01632]
67. Chen D, Zhang G, Li R, Guan M, Wang X, Zou T, et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release. Journal of the American Chemical Society. 2018; 140(24): 7373-376. [DOI:10.1021/jacs.7b12025]
68. Bagheri AM, Ranjbar M. Nanoparticles for Drug Delivery in Parkinson's Disease: A Review of Potential Applications. The Neuroscience Journal of Shefaye Khatam. 2024; 12(4): 67-80. [DOI:10.61186/shefa.12.4.67]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadgholi A. The Effect of Stimuli-Responsive Smart Nanoparticles in the Treatment of Central Nervous System Tumors. Shefaye Khatam 2025; 13 (2) :115-130
URL: http://shefayekhatam.ir/article-1-2573-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 2 (Spring 2025) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4714