1. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. The Lancet. 2019; 393: 689-701. [ DOI:10.1016/S0140-6736(18)32596-0] 2. Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020; 54: 185-91. [ DOI:10.1159/000503831] 3. Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, et al. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. International Journal of Biological Macromolecules. 2021; 182: 82-90. [ DOI:10.1016/j.ijbiomac.2021.03.106] 4. Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. Journal of Experimental & Clinical Cancer Research. 2016; 35: 1-11. [ DOI:10.1186/s13046-016-0444-6] 5. Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi Barough S, Gholami L, et al. The effect of collagen and fibrin hydrogels encapsulated with adipose tissue mesenchymal stem cell-derived exosomes for treatment of spinal cord injury in a rat model. Iranian Journal of Biotechnology. 2023; 21: e3505. 6. Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, et al. Traumatic brain injuries. Nature Reviews Disease Primers. 2016; 2: 1-9. [ DOI:10.1038/nrdp.2016.84] 7. Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, et al. Astaxanthin: past, present, and future. Marine Drugs. 2023; 21: 514. [ DOI:10.3390/md21100514] 8. Dose J, Matsugo S, Yokokawa H, Koshida Y, Okazaki S, et al. Free radical scavenging and cellular antioxidant properties of astaxanthin. International Journal of Molecular Sciences. 2016; 17: 103. [ DOI:10.3390/ijms17010103] 9. Masoudi A, Jorjani M, Alizadeh M, Mirzamohammadi S, Mohammadi M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Research Bulletin. 2021; 177: 324-31. [ DOI:10.1016/j.brainresbull.2021.10.014] 10. Fakhri S, Yosifova Aneva I, Farzaei MH, Sobarzo-Sánchez E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules. 2019; 24: 2640. [ DOI:10.3390/molecules24142640] 11. Aquila G, Marracino L, Martino V, Calabria D, Campo G, et al. The use of nutraceuticals to counteract atherosclerosis: the role of the notch pathway. Oxidative Medicine and Cellular Longevity. 2019; 2019: 5470470. [ DOI:10.1155/2019/5470470] 12. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition. 2006; 46: 185-96. [ DOI:10.1080/10408690590957188] 13. Elbahnaswy S, Elshopakey GE. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. Fish Physiology and Biochemistry. 2024; 50: 97-126. [ DOI:10.1007/s10695-022-01167-0] 14. Brotosudarmo TH, Limantara L, Setiyono E, Heriyanto. Structures of astaxanthin and their consequences for therapeutic application. International Journal of Food Science. 2020; 2020: 2156582. [ DOI:10.1155/2020/2156582] 15. Kumar S, Kumar R, Diksha, Kumari A, Panwar A. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential. Journal of Basic Microbiology. 2022; 62: 1064-82. [ DOI:10.1002/jobm.202100391] 16. Pereira CP, Souza AC, Vasconcelos AR, Prado PS. Antioxidant and anti-inflammatory mechanisms of astaxanthin in cardiovascular diseases. International Journal of Molecular Medicine. 2021; 47: 37-48. [ DOI:10.3892/ijmm.2020.4783] 17. Alugoju P, Krishna Swamy VK, Anthikapalli NV, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: a comprehensive review. Critical Reviews in Food Science and Nutrition. 2023; 63: 10709-74. [ DOI:10.1080/10408398.2022.2084600] 18. Chang MX, Xiong F. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules. 2020; 25: 5342. [ DOI:10.3390/molecules25225342] 19. Si P, Zhu C. Biological and neurological activities of astaxanthin. Molecular Medicine Reports. 2022;26 [ DOI:10.3892/mmr.2022.12816] 20. Abdelazim K, Ghit A, Assal D, Dorra N, Noby N, et al. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacological Reports. 2023; 75: 771-90. [ DOI:10.1007/s43440-023-00488-y] 21. Santonocito D, Raciti G, Campisi A, Sposito G, Panico A, et al. Astaxanthin-loaded stealth lipid nanoparticles (astaxanthin-SSLN) as potential carriers for the treatment of Alzheimer's disease: formulation development and optimization. Nanomaterials. 2021; 11: 391. [ DOI:10.3390/nano11020391] 22. Rodella U, Honisch C, Gatto C, Ruzza P, D'Amato Tóthová J. Antioxidant nutraceutical strategies in the prevention of oxidative stress related eye diseases. Nutrients. 2023; 15: 2283. [ DOI:10.3390/nu15102283] 23. Doshmanziari M, Shirian S, Kouchakian MR, Moniri SF, Jangnoo S, et al. Mesenchymal stem cells act as stimulators of neurogenesis and synaptic function in a rat model of Alzheimer's disease. Heliyon. 2021; 7: e07723. [ DOI:10.1016/j.heliyon.2021.e07996] 24. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An investigation into the effects of water- and fat-soluble vitamins in Alzheimer's and Parkinson's diseases. Neuroscience Journal Shefaye Khatam. 2023; 11: 95-109. [ DOI:10.61186/shefa.11.3.95] 25. Shahverdi Shahraki M, Sourani Z, Behdarvand F, Modarres Mousavi M, Shirian S. The potency of biomarkers for the diagnosis and treatment of Parkinson's disease and Alzheimer's disease. Neuroscience Journal Shefaye Khatam. 2022; 10: 91-103. [ DOI:10.61186/shefa.10.2.91] 26. Lotfi A, Abroodi Z, Khazaei M. Biological activities of astaxanthin in the treatment of neurodegenerative diseases. Neurodegenerative Disease Management. 2024; 14: 241-56. [ DOI:10.1080/17582024.2024.2433932] 27. Che H, Li Q, Zhang T, Wang D, Yang L, et al. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer's disease in APP/PS1 double-transgenic mice. Journal of Agricultural and Food Chemistry. 2018; 66: 4948-57. [ DOI:10.1021/acs.jafc.8b00988] 28. Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, et al. Recent advancements in astaxanthin production from microalgae: a review. Bioresource Technology. 2022; 364: 128030. [ DOI:10.1016/j.biortech.2022.128030] 29. Capelli B, Bagchi D, Cysewski GR. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods. 2013; 12: 145-52. [ DOI:10.1007/s13749-013-0051-5] 30. Stachowiak B, Szulc P. Astaxanthin for the food industry. Molecules. 2021; 26: 2666. [ DOI:10.3390/molecules26092666] 31. Ahmed S, Venigalla H, Mekala HM, Dar S, Hassan M, et al. Traumatic brain injury and neuropsychiatric complications. Indian Journal of Psychological Medicine. 2017; 39: 114-21. [ DOI:10.4103/0253-7176.203129] 32. Schweitzer AD, Niogi SN, Whitlow CT, Tsiouris AJ. Traumatic brain injury: imaging patterns and complications. Radiographics. 2019; 39: 1571-95. [ DOI:10.1148/rg.2019190076] 33. Ladak AA, Enam SA, Ibrahim MT. A review of the molecular mechanisms of traumatic brain injury. World Neurosurgery. 2019; 131: 126-32. [ DOI:10.1016/j.wneu.2019.07.039] 34. Thapa K, Khan H, Singh TG, Kaur A. Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. Journal of Molecular Neuroscience. 2021; 71: 1725-42. [ DOI:10.1007/s12031-021-01841-7] 35. Mira RG, Lira M, Cerpa W. Traumatic brain injury: mechanisms of glial response. Frontiers in Physiology. 2021; 12: 740939. [ DOI:10.3389/fphys.2021.740939] 36. Fesharaki-Zadeh A. Oxidative stress in traumatic brain injury. International Journal of Molecular Sciences. 2022; 23: 13000. [ DOI:10.3390/ijms232113000] 37. Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F, Carrillo-Vico A. Oxidative stress in traumatic brain injury. Current Medicinal Chemistry. 2014; 21: 1201-11. [ DOI:10.2174/0929867321666131217153310] 38. Ma J, Zhang K, Wang Z, Chen G. Progress of research on diffuse axonal injury after traumatic brain injury. Neural Plasticity. 2016; 2016: 9746313. [ DOI:10.1155/2016/9746313] 39. Jafarimanesh MA, Ai J, Shojaei S, Khonakdar HA, Darbemamieh G, et al. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Progress in Biomaterials. 2023; 12: 75-86. [ DOI:10.1007/s40204-022-00209-3] 40. Graham NS, Jolly A, Zimmerman K, Bourke NJ, Scott G, et al. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury. Brain. 2020; 143: 3685-98. [ DOI:10.1093/brain/awaa316] 41. Howlett JR, Nelson LD, Stein MB. Mental health consequences of traumatic brain injury. Biological Psychiatry. 2022; 91: 413-20. [ DOI:10.1016/j.biopsych.2021.09.024] 42. Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. Journal of Neurology. 2019; 266: 2878-89. [ DOI:10.1007/s00415-019-09541-4] 43. Fleischmann C, Shohami E, Trembovler V, Heled Y, Horowitz M. Cognitive effects of astaxanthin pretreatment on recovery from traumatic brain injury. Frontiers in Neurology. 2020; 11: 999. [ DOI:10.3389/fneur.2020.00999] 44. Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating traumatic brain injury: a narrative review of supplementation and dietary protocols. Nutrients. 2024; 16: 2430. [ DOI:10.3390/nu16152430] 45. Lim KC, Yusoff FM, Shariff M, Kamarudin MS. Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture. 2018; 10: 738-73. [ DOI:10.1111/raq.12200] 46. Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, et al. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. Journal of Hazardous Materials. 2023; 456: 131684. [ DOI:10.1016/j.jhazmat.2023.131684] 47. Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, et al. Astaxanthin: a potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxidative Medicine and Cellular Longevity. 2019; 2019: 3849692. [ DOI:10.1155/2019/3849692] 48. Qiu X, Fu K, Zhao X, Zhang Y, Yuan Y, et al. Protective effects of astaxanthin against ischemia/reperfusion induced renal injury in mice. Journal of Translational Medicine. 2015; 13: 28. [ DOI:10.1186/s12967-015-0388-1] 49. Tublu S, Barua S, Kashyap P, Barua NC, Kalita J, et al. Astaxanthin ameliorates oxidative stress and neuronal apoptosis in an MPTP-induced Parkinson's disease mouse model via Nrf2/HO-1 signaling. Molecular Neurobiology. 2024; 61: 3613-27. 50. Nouchi R, Suiko T, Kimura E, Takenaka H, Murakoshi M, et al. Effects of lutein and astaxanthin intake on the improvement of cognitive functions among healthy adults: a systematic review of randomized controlled trials. Nutrients. 2020; 12: 617. [ DOI:10.3390/nu12030617] 51. Dukay B, Csoboz B, Tóth ME. Heat-shock proteins in neuroinflammation. Frontiers in Pharmacology. 2019; 10: 920. [ DOI:10.3389/fphar.2019.00920] 52. Saxena SK, Sharma D, Kumar S, Maurya VK, Ansari S, et al. Decoding the role of large heat shock proteins in the progression of neuroinflammation-mediated neurodegenerative disorders. Neuroprotection. 2025. [ DOI:10.1002/nep3.68] 53. San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Molecular Neurodegeneration. 2017; 12: 1-20. [ DOI:10.1186/s13024-017-0208-6] 54. Masoudi A, Dargahi L, Abbaszadeh F, Pourgholami MH, Asgari A, et al. Neuroprotective effects of astaxanthin in a rat model of spinal cord injury. Behavioural Brain Research. 2017; 329: 104-10. [ DOI:10.1016/j.bbr.2017.04.026] 55. Wang Y, Liu Y, Li Y, Liu B, Wu P, et al. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochemica. 2019; 121: 56-63. [ DOI:10.1016/j.acthis.2018.10.014] 56. Zhang X, Lu Y, Wu Q, Dai H, Li W, et al. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway. The FASEB Journal. 2019; 33: 722-37. [ DOI:10.1096/fj.201800642RR] 57. Zhang M, Cui Z, Cui H, Cao Y, Wang Y, et al. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neuroscience. 2016; 17: 1-9. [ DOI:10.1186/s12868-016-0295-2] 58. Ji X, Peng D, Zhang Y, Zhang J, Wang Y, et al. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Research. 2017; 1659: 88-95. [ DOI:10.1016/j.brainres.2016.12.031] 59. Fleischmann C, Shohami E, Heled Y, Horowitz M. Astaxanthin and olive oil pretreatment improves recovery of motor and cognitive skills in a closed head injury TBI model in male Sabra mice. The FASEB Journal. 2018; 32: 877.1. [ DOI:10.1096/fasebj.2018.32.1_supplement.877.1] 60. Ahuja CS, Wilson JR, Nori S, Kotter M, Druschel C, et al. Traumatic spinal cord injury. Nature Reviews Disease Primers. 2017; 3: 1-21. [ DOI:10.1038/nrdp.2017.18] 61. Eckert MJ, Martin MJ. Trauma: spinal cord injury. Surgical Clinics of North America. 2017; 97: 1031-45. [ DOI:10.1016/j.suc.2017.06.008] 62. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AM, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. International Journal of Molecular Sciences. 2020; 21: 7533. [ DOI:10.3390/ijms21207533] 63. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Frontiers in Neurology. 2019; 10: 282. [ DOI:10.3389/fneur.2019.00282] 64. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences. 2022; 23: 7273. [ DOI:10.3390/ijms23137273] 65. Streijger F, So K, Manouchehri N, Tigchelaar S, Lee JH, et al. Changes in pressure, hemodynamics, and metabolism within the spinal cord during the first 7 days after injury using a porcine model. Journal of Neurotrauma. 2017; 34: 3336-50. [ DOI:10.1089/neu.2017.5034] 66. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Comprehensive Physiology. 2016; 7: 113. [ DOI:10.1002/j.2040-4603.2017.tb00741.x] 67. Jurcau A, Ardelean AI. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022; 10: 574. [ DOI:10.3390/biomedicines10030574] 68. Chio JC, Punjani N, Hejrati N, Zavvarian MM, Hong J, et al. Extracellular matrix and oxidative stress following traumatic spinal cord injury: physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxidants & Redox Signaling. 2022; 37: 184-207. [ DOI:10.1089/ars.2021.0120] 69. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nature Reviews Neuroscience. 2020; 21: 139-52. [ DOI:10.1038/s41583-020-0263-9] 70. Kidd GJ, Ohno N, Trapp BD. Astaxanthin enhances myelination and reduces oxidative stress in a cuprizone-induced mouse model of demyelination. Journal of Neurochemistry. 2020; 154: 453-67. 71. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, et al. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Medicine and Cellular Longevity. 2016; 2016: 7432797. [ DOI:10.1155/2016/7432797] 72. Abbaszadeh F, Jorjani M, Joghataei MT, Raminfard S, Mehrabi S. Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury. Naunyn-Schmiedeberg's Archives of Pharmacology. 2023; 396: 3075-86. [ DOI:10.1007/s00210-023-02512-7] 73. Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Research Bulletin. 2018; 143: 217-24. [ DOI:10.1016/j.brainresbull.2018.09.011] 74. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018; 54: 287-93. [ DOI:10.1016/j.ajme.2017.09.001] 75. Morales M, Munné-Bosch S. Malondialdehyde: facts and artifacts. Plant Physiology. 2019; 180: 1246-50. [ DOI:10.1104/pp.19.00405] 76. Abbaszadeh F, Jorjani M, Joghataei MT, Mehrabi S. Astaxanthin modulates autophagy, apoptosis, and neuronal oxidative stress in a rat model of compression spinal cord injury. Neurochemical Research. 2022; 47: 2043-51. [ DOI:10.1007/s11064-022-03593-1] 77. Nair A, Ahirwar A, Singh S, Lodhi R, Lodhi A, et al. Astaxanthin as a king of ketocarotenoids: structure, synthesis, accumulation, bioavailability and antioxidant properties. Marine Drugs. 2023; 21: 17. [ DOI:10.3390/md21030176] 78. Davinelli S, Saso L, D'Angeli F, Calabrese V, Intrieri M, et al. Astaxanthin as a modulator of Nrf2, NF-κB, and their crosstalk: molecular mechanisms and possible clinical applications. Molecules. 2022; 27: 502. [ DOI:10.3390/molecules27020502] 79. Baev AY, Vinokurov AY, Novikova IN, Dremin VV, Potapova EV, et al. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells. 2022; 11: 706. [ DOI:10.3390/cells11040706] 80. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, et al. Oxidative stress: major threat in traumatic brain injury. CNS & Neurological Disorders - Drug Targets. 2018; 17: 689-95. [ DOI:10.2174/1871527317666180627120501] 81. Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(ε-caprolactone) scaffold. Molecular Neurobiology. 2016; 53: 5278-87. [ DOI:10.1007/s12035-015-9442-5] 82. Gur C, Kandemir FM, Caglayan C, Satıcı E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chemico-Biological Interactions. 2022; 365: 110073. [ DOI:10.1016/j.cbi.2022.110073] 83. Valdivielso JM, Eritja À, Caus M, Bozic M. Glutamate-gated NMDA receptors: insights into the function and signaling in the kidney. Biomolecules. 2020; 10: 1051. [ DOI:10.3390/biom10071051] 84. Stavoe AK, Holzbaur EL. Autophagy in neurons. Annual Review of Cell and Developmental Biology. 2019; 35: 477-500. [ DOI:10.1146/annurev-cellbio-100818-125242] 85. Zhou J, Li XY, Liu YJ, Feng J, Wu Y, et al. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2022; 18: 1240-55. [ DOI:10.1080/15548627.2021.1984656] 86. Lee D, Hong JH. Niemann-pick disease type C (NPDC) by mutation of NPC1 and NPC2: aberrant lysosomal cholesterol trafficking and oxidative stress. Antioxidants. 2023; 12: 2021. [ DOI:10.3390/antiox12122021] 87. Zhang J, Ding C, Zhang S, Xu Y. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3β/Nrf2 signalling pathway in vitro. Journal of Cellular and Molecular Medicine. 2020; 24: 8977-85. [ DOI:10.1111/jcmm.15531] 88. Wen X, Huang A, Hu J, Zhong Z, Liu Y, et al. Neuroprotective effect of astaxanthin against glutamate-induced neurotoxicity in HT22 cells via the Nrf2/HO-1 pathway. Neuroscience Letters. 2020; 735: 135162. 89. Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis. Medicine International. 2023; 3: 42. [ DOI:10.3892/mi.2023.102] 90. Elbandy M. Anti-inflammatory effects of marine bioactive compounds and their potential as functional food ingredients in the prevention and treatment of neuroinflammatory disorders. Molecules. 2022; 28: 2. [ DOI:10.3390/molecules28010002] 91. Kwatra B, Hussain MS, Bhowmik R, Manoharan S. Reviewing therapeutic and immuno-pathological applications of vitamins and carotenoids. International Journal of Scientific Research in Science and Technology. 2020; 7: 287-313. [ DOI:10.32628/IJSRST207473] 92. Zhang XS, Zhang X, Wu Q, Li W, Zhang QR, et al. Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling. Marine Drugs. 2014; 12: 4291-310. [ DOI:10.3390/md12084291] 93. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005; 46: 470-2. [ DOI:10.1111/j.0013-9580.2005.66104.x] 94. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, et al. Role of oxidative stress in epileptic seizures. Neurochemistry International. 2011; 59: 122-37. [ DOI:10.1016/j.neuint.2011.03.025] 95. Geronzi U, Lotti F, Grosso S. Oxidative stress in epilepsy. Expert Review of Neurotherapeutics. 2018; 18: 427-34. [ DOI:10.1080/14737175.2018.1465410] 96. Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in epilepsy. International Journal of Molecular Sciences. 2017; 18: 2365. [ DOI:10.3390/ijms18112365] 97. Abdulqader YA, Kawy HS, Alkreathy HM, Rajeh NA. The potential antiepileptic activity of astaxanthin in epileptic rats treated with valproic acid. Saudi Pharmaceutical Journal. 2021; 29: 418-26. [ DOI:10.1016/j.jsps.2021.04.002] 98. Wang X, Li H, Wang G, He Z, Cui X, et al. Therapeutic and preventive effects of astaxanthin in ischemic stroke. Frontiers in Nutrition. 2024; 11: 1441062. [ DOI:10.3389/fnut.2024.1441062] 99. Aminullah Y, Naftali Z, Santosa D, Prajoko YW, Azam M, et al. Boosting antioxidant defense: the effect of astaxanthin on superoxide dismutase and malondialdehyde reduction in patients with head and neck cancer receiving cisplatin chemotherapy. Asian Pacific Journal of Cancer Prevention. 2024; 25: 3741. [ DOI:10.31557/APJCP.2024.25.10.3741] 100. Wang Y, Liu Y, Li Y, Liu B, Wu P, et al. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochemica. 2019; 121: 56-63. [ DOI:10.1016/j.acthis.2018.10.014] 101. Madireddy S, Madireddy S. Therapeutic strategies to ameliorate neuronal damage in epilepsy by regulating oxidative stress, mitochondrial dysfunction, and neuroinflammation. Brain Sciences. 2023; 13: 784. [ DOI:10.3390/brainsci13050784]
|