[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..

..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 12، شماره 2 - ( بهار 1403 ) ::
دوره 12 شماره 2 صفحات 101-87 برگشت به فهرست نسخه ها
نقش اگزوزوم‌ها در بیماری‌زایی، تشخیص و درمان بیماری‌‌های پارکینسون و آلزایمر
حمید‌ رضا مرادی ، سحر عبدالهی نژاد ، سهراب حیدریان*
گروه دامپزشکی، دانشکده کشاورزی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران ، drsohrab.hey@gmail.com
چکیده:   (982 مشاهده)
مقدمه: بیماری‌های پارکینسون و آلزایمر دو بیماری شایع تحلیل‌برنده عصبی هستند که علت آن‌ها تا حد زیادی ناشناخته مانده است. این دو بیماری ویژگی‌های بیماری‌زایی مشابهی مانند از دست دادن پیشرونده نورون‌های خاص، و حضور پروتئین‌های انباشته شده دارند. اگزوزوم‌ها با ساختار دو لایه لیپیدی مشابه غشاء سلولی از اکثر سلول‌های مختلف بدن مشتق می‌شوند و به راحتی می‌توانند از انواع غشاهای بیولوژیک مانند سد خونی- مغزی عبور کنند. اگزوزوم­‌ها برای انتقال واسطه‌ها و اطلاعات بین سلول‌ها مهم هستند. بنابراین، آن‌ها می‌­توانند نقش حیاتی در شرایط طبیعی و پاتولوژی مغز، از جمله اختلالات عصبی مانند بیماری پارکینسون و بیماری آلزایمر داشته باشند. این مقاله نقش و کاربرد اگزوزوم­‌ها در بیماری‌زایی و درمان بیماری‌­های پارکینسون و آلزایمر را بررسی می‌کند. نتیجه­‌گیری: ساختار و بیوژنز اگزوزوم‌ها ممکن است نقش‌های مهمی در تشخیص و پیشرفت بیماری‌های تحلیل برندۀ عصبی داشته باشد. علاوه‌بر این، درک مکانیسم‌های پیچیده حاکم بر تشکیل و ترکیب اگزوزوم در شرایط پاتولوژی می‌­تواند بینش ارزشمندی در مورد پاتوفیزیولوژی زمینه­‌ای بیماری‌های پارکینسون و آلزایمر ارائه دهد.
 
واژه‌های کلیدی: بیماری‌های تحلیل‌برنده عصبی، سد خونی- مغزی، سیستم اعصاب مرکزی، غشاء سلولی
متن کامل [PDF 988 kb]   (437 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: نوروفيزيولوژي
فهرست منابع
1. Reddy AP, Ravichandran J, Carkaci-Salli NJBeBA-MBoD. Neural regeneration therapies for Alzheimer's and Parkinson's disease-related disorders. 2020; 1866(4): 165506. [DOI:10.1016/j.bbadis.2019.06.020]
2. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Bakhtiari moghadam B, Shirian S. An Investigation into the Effects of Water- and Fat-Soluble Vitamins in Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 95-109. [DOI:10.61186/shefa.11.3.95]
3. He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang CJIJoMS. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. 2023; 24(13): 11054. [DOI:10.3390/ijms241311054]
4. Chum PP, Hakim MA, Behringer EJJJoAsD. Cerebrovascular MicroRNA Expression Profile During Early Development of Alzheimer's Disease in a Mouse Model. 2022; 85(1): 91-113. [DOI:10.3233/JAD-215223]
5. Moradi HR, Hajali V, Khaksar Z, Vafaee F, Forouzanfar F, Negah SS. The next step of neurogenesis in the context of Alzheimer's disease. Molecular Biology Reports. 2021; 48(7): 5647-60. [DOI:10.1007/s11033-021-06520-9]
6. Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, et al. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. 2022; 8(1): 66. [DOI:10.1038/s41531-022-00324-9]
7. Que R, Zheng J, Chang Z, Zhang W, Li H, Xie Z, et al. Dl-3-n-butylphthalide rescues dopaminergic neurons in Parkinson's disease models by inhibiting the NLRP3 inflammasome and ameliorating mitochondrial impairment. 2021; 12: 794770. [DOI:10.3389/fimmu.2021.794770]
8. Mumtaz S, Rana JN, Choi EH, Han IJIJoMS. Microwave radiation and the brain: Mechanisms, current status, and future prospects. 2022; 23(16): 9288. [DOI:10.3390/ijms23169288]
9. Lee B, Shin M, Park Y, Won S-Y, Cho KSJIjoms. Physical exercise-induced myokines in neurodegenerative diseases. 2021; 22(11): 5795. [DOI:10.3390/ijms22115795]
10. Gao D, Li P, Gao F, Feng Y, Li X, Li D, et al. Preparation and multitarget anti-AD activity study of chondroitin sulfate lithium in AD mice induced by combination of D-Gal/AlCl 3. 2022; 2022. [DOI:10.1155/2022/9466166]
11. Zhou A, Wu H, Pan J, Wang X, Li J, Wu Z, Hui AJM. Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. 2015; 20(1): 1304-18. [DOI:10.3390/molecules20011304]
12. Khan ST, Ahmed S, Gul S, Khan A, Al-Harrasi AJNI. Search for safer and potent natural inhibitors of Parkinson's disease. 2021; 149: 105135. [DOI:10.1016/j.neuint.2021.105135]
13. Sivanandy P, Leey TC, Xiang TC, Ling TC, Wey Han SA, Semilan SLA, et al. Systematic review on Parkinson's disease medications, emphasizing on three recently approved drugs to control Parkinson's symptoms. 2021; 19(1): 364. [DOI:10.3390/ijerph19010364]
14. Salarpour S, Barani M, Pardakhty A, Khatami M, Chauhan NPSJJoML. The application of exosomes and exosome-nanoparticle in treating brain disorders. 2022; 350: 118549. [DOI:10.1016/j.molliq.2022.118549]
15. Xiao L, Hareendran S, Loh YPJEv, acids cn. Function of exosomes in neurological disorders and brain tumors. 2021; 2: 55. [DOI:10.20517/evcna.2021.04]
16. Johnstone RM, Adam M, Hammond J, Orr L, Turbide CJJoBC. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). 1987; 262(19): 9412-20. [DOI:10.1016/S0021-9258(18)48095-7]
17. Pan B-T, Johnstone RMJC. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. 1983; 33(3): 967-78. [DOI:10.1016/0092-8674(83)90040-5]
18. Kalluri R, LeBleu VSJS. The biology, function, and biomedical applications of exosomes. 2020; 367(6478): eaau6977. [DOI:10.1126/science.aau6977]
19. Yang Y, Peng Y, Li Y, Shi T, Luan Y, Yin CJFiI. Role of stem cell derivatives in inflammatory diseases. 2023; 14: 1153901. [DOI:10.3389/fimmu.2023.1153901]
20. Kaur S, Verma H, Dhiman M, Tell G, Gigli GL, Janes F, Mantha AKJMN. Brain exosomes: friend or foe in Alzheimer's disease? 2021: 1-15. [DOI:10.1007/s12035-021-02547-y]
21. Li M-Y, Liu L-Z, Dong MJMc. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. 2021; 20: 1-22. [DOI:10.1186/s12943-021-01312-y]
22. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Taylor & Francis; 2014. p. 26913. [DOI:10.3402/jev.v3.26913]
23. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology. 2014; 30: 255-89. [DOI:10.1146/annurev-cellbio-101512-122326]
24. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019; 8(7): 727. [DOI:10.3390/cells8070727]
25. Chen J, Zhang G, Wan Y, Xia B, Ni Q, Shan S, et al. Immune cell-derived exosomes as promising tools for cancer therapy. Journal of Controlled Release. 2023; 364: 508-28. [DOI:10.1016/j.jconrel.2023.11.003]
26. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics. 2020; 10(8): 3684. [DOI:10.7150/thno.41580]
27. Yin Z, Han Z, Hu T, Zhang S, Ge X, Huang S, et al. Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain, behavior, and immunity. 2020; 83: 270-82. [DOI:10.1016/j.bbi.2019.11.004]
28. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. Journal of hematology & oncology. 2015; 8(1): 1-13. [DOI:10.1186/s13045-015-0181-x]
29. Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harbor perspectives in biology. 2014; 6(10): a016857. [DOI:10.1101/cshperspect.a016857]
30. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977. [DOI:10.1126/science.aau6977]
31. Ferreira JV, da Rosa Soares A, Ramalho J, Máximo Carvalho C, Cardoso MH, Pintado P, et al. LAMP2A regulates the loading of proteins into exosomes. Science advances. 2022; 8(12): eabm1140. [DOI:10.1126/sciadv.abm1140]
32. Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012; 1(7): 1074-83. [DOI:10.4161/onci.20897]
33. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319(5867): 1244-7. [DOI:10.1126/science.1153124]
34. Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, et al. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS letters. 2004; 572(1-3): 11-4. [DOI:10.1016/j.febslet.2004.06.082]
35. Chen J, Shan S, Xia B, Zhang L, Liang XJ. Brain‐Targeted Exosomes‐Based Drug Delivery System to Overcome the Treatment Bottleneck of Brainstem Glioma. Advanced Functional Materials. 2023: 2302378. [DOI:10.1002/adfm.202302378]
36. Chen J, Xu Y, Lu Y, Xing W. Isolation and Visible Detection of Tumor-Derived Exosomes from Plasma. Analytical Chemistry. 2018; 90(24): 14207-15. [DOI:10.1021/acs.analchem.8b03031]
37. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy. 2011; 19(10): 1769-79. [DOI:10.1038/mt.2011.164]
38. Afjeh Dana E, Marivani M, Mehravi B, Karimzadeh F, Ashtari K. Development of Nanoparticles for Drug Delivery to the Brain. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 76-87. [DOI:10.18869/acadpub.shefa.5.2.76]
39. Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood). 2022; 247(9): 788-96. [DOI:10.1177/15353702221080745]
40. Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain, behavior, and immunity. 2009; 23(4): 507-17. [DOI:10.1016/j.bbi.2009.01.017]
41. Tondro G, Rajabzade G, Mohammadi A, Moradi H, Sahab Negah S. Anti-Inflammatory Effects of Nano- Curcumin on a Glioblastoma Cell Line. The Neuroscience Journal of Shefaye Khatam. 2022; 10(3): 48-56. [DOI:10.52547/shefa.10.3.48]
42. Erickson MA, Banks WA. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacological reviews. 2018; 70(2): 278-314. [DOI:10.1124/pr.117.014647]
43. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. International journal of molecular sciences. 2014; 15(3): 4142-57. [DOI:10.3390/ijms15034142]
44. Leñero C, Kaplan LD, Best TM, Kouroupis D. CD146+ Endometrial-Derived Mesenchymal Stem/Stromal Cell Subpopulation Possesses Exosomal Secretomes with Strong Immunomodulatory miRNA Attributes. Cells. 2022; 11(24): 4002. [DOI:10.3390/cells11244002]
45. Kouroupis D, Kaplan LD, Best TM. Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Scientific reports. 2022; 12(1): 3609. [DOI:10.1038/s41598-022-07569-7]
46. Chan BD, Wong WY, Lee MML, Cho WCS, Yee BK, Kwan YW, Tai WCS. Exosomes in inflammation and inflammatory disease. Proteomics. 2019; 19(8): 1800149. [DOI:10.1002/pmic.201800149]
47. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. Journal of translational medicine. 2012; 10: 1-7. [DOI:10.1186/1479-5876-10-5]
48. Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. Journal of Biological Chemistry. 2011; 286(1): 787-96. [DOI:10.1074/jbc.M110.190009]
49. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS biology. 2013; 11(7): e1001604. [DOI:10.1371/journal.pbio.1001604]
50. Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M, Perrotta C, et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. The EMBO journal. 2012; 31(5): 1231-40. [DOI:10.1038/emboj.2011.489]
51. Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. Journal of Neuroscience. 2011; 31(20): 7275-90. [DOI:10.1523/JNEUROSCI.6476-10.2011]
52. Weng S, Lai Q-L, Wang J, Zhuang L, Cheng L, Mo Y, et al. The role of exosomes as mediators of neuroinflammation in the pathogenesis and treatment of Alzheimer's disease. Frontiers in Aging Neuroscience. 2022; 14: 899944. [DOI:10.3389/fnagi.2022.899944]
53. Novoa Fernández C, Salazar Torres PI, Cisternas P, Gherardelli Brooks C, Vera Salazar R, Zolezzi JM. Inflammation context in Alzheimer's disease, a relationship intricate to define. 2022. [DOI:10.1186/s40659-022-00404-3]
54. Gupta A, Pulliam L. Exosomes as mediators of neuroinflammation. Journal of neuroinflammation. 2014; 11(1): 1-10. [DOI:10.1186/1742-2094-11-68]
55. Liang T, Zhang Y, Wu S, Chen Q, Wang L. The role of NLRP3 inflammasome in Alzheimer's disease and potential therapeutic targets. Frontiers in Pharmacology. 2022; 13: 845185. [DOI:10.3389/fphar.2022.845185]
56. Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Molecular pharmaceutics. 2019; 16(6): 2690-9. [DOI:10.1021/acs.molpharmaceut.9b00246]
57. Kalia LV, Lang AE. Parkinson's disease. The Lancet. 2015; 386(9996): 896-912. [DOI:10.1016/S0140-6736(14)61393-3]
58. De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. The Lancet Neurology. 2006; 5(6): 525-35. [DOI:10.1016/S1474-4422(06)70471-9]
59. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: risk factors and prevention. The Lancet Neurology. 2016; 15(12): 1257-72. [DOI:10.1016/S1474-4422(16)30230-7]
60. Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nature Reviews Neurology. 2013; 9(1): 13-24. [DOI:10.1038/nrneurol.2012.242]
61. Pinnell JR, Cui M, Tieu K. Exosomes in Parkinson disease. Journal of neurochemistry. 2021; 157(3): 413-28. [DOI:10.1111/jnc.15288]
62. Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson's disease. Genes & diseases. 2019; 6(2): 120-8. [DOI:10.1016/j.gendis.2019.01.004]
63. Alvarez-Erviti L, Couch Y, Richardson J, Cooper JM, Wood MJ. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neuroscience research. 2011; 69(4): 337-42. [DOI:10.1016/j.neures.2010.12.020]
64. Ishii T, Warabi E, Mann GE. Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis. Free Radical Biology and Medicine. 2019; 133: 169-78. [DOI:10.1016/j.freeradbiomed.2018.09.002]
65. Lai CP-K, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Frontiers in physiology. 2012; 3: 228. [DOI:10.3389/fphys.2012.00228]
66. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Frontiers in pharmacology. 2016; 7: 231. [DOI:10.3389/fphar.2016.00231]
67. Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cellular and Molecular Life Sciences. 2013; 70: 3871-82. [DOI:10.1007/s00018-013-1290-8]
68. Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease. Journal of controlled release. 2018; 287: 156-66. [DOI:10.1016/j.jconrel.2018.08.035]
69. Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, Taglialatela G. α‐Synuclein oligomers oppose long‐term potentiation and impair memory through a calcineurin‐dependent mechanism: relevance to human synucleopathic diseases. Journal of neurochemistry. 2012; 120(3): 440-52. [DOI:10.1111/j.1471-4159.2011.07576.x]
70. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of disease. 2011; 42(3): 360-7. [DOI:10.1016/j.nbd.2011.01.029]
71. Friedman JH. Dementia with Lewy bodies and Parkinson disease dementia: it is the same disease! Parkinsonism & Related Disorders. 2018; 46: S6-S9. [DOI:10.1016/j.parkreldis.2017.07.013]
72. Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2019; 1867(10): 890-908. [DOI:10.1016/j.bbapap.2019.03.001]
73. Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM-Y, et al. Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. Journal of Biological Chemistry. 2002; 277(50): 49071-6. [DOI:10.1074/jbc.M208046200]
74. Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. International journal of biological macromolecules. 2017; 100: 37-54. [DOI:10.1016/j.ijbiomac.2016.10.021]
75. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of controlled release. 2016; 235: 34-47. [DOI:10.1016/j.jconrel.2016.05.044]
76. Suzuki M, Sango K, Wada K, Nagai Y. Pathological role of lipid interaction with α-synuclein in Parkinson's disease. Neurochemistry International. 2018; 119: 97-106. [DOI:10.1016/j.neuint.2017.12.014]
77. Zhu M, Li J, Fink AL. The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation. Journal of Biological Chemistry. 2003; 278(41): 40186-97. [DOI:10.1074/jbc.M305326200]
78. Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Annals of the New York Academy of Sciences. 2010; 1199(1): 221-30. [DOI:10.1111/j.1749-6632.2009.05361.x]
79. Peng Q, Zhang S, Yang Q, Zhang T, Wei X-Q, Jiang L, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials. 2013; 34(33): 8521-30. [DOI:10.1016/j.biomaterials.2013.07.102]
80. Burnouf T, Agrahari V, Agrahari V. Extracellular vesicles as nanomedicine: Hopes and hurdles in clinical translation. International journal of nanomedicine. 2019: 8847-59. [DOI:10.2147/IJN.S225453]
81. Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug discovery today. 2018; 23(5): 1007-15. [DOI:10.1016/j.drudis.2017.11.010]
82. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release. 2015; 219: 396-405. [DOI:10.1016/j.jconrel.2015.07.030]
83. Shahverdi Shahraki M, Sourani Z, Behdarvand F, Modarres Mousavi M, Shirian S. The Potency of Biomarkers for the Diagnosis and Treatment of Parkinson's Disease and Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2022; 10(2): 91-103. [DOI:10.61186/shefa.10.2.91]
84. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013; 13(22): 3354-64. [DOI:10.1002/pmic.201300282]
85. Clayton A, Harris CL, Court J, Mason MD, Morgan BP. Antigen‐presenting cell exosomes are protected from complement‐mediated lysis by expression of CD55 and CD59. European journal of immunology. 2003; 33(2): 522-31. [DOI:10.1002/immu.200310028]
86. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Molecular therapy. 2010; 18(9): 1606-14. [DOI:10.1038/mt.2010.105]
87. Yousefpour P, Chilkoti A. Co‐opting biology to deliver drugs. Biotechnology and bioengineering. 2014; 111(9): 1699-716. [DOI:10.1002/bit.25307]
88. Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic acids research. 2012; 40(17) ,130. [DOI:10.1093/nar/gks463]
89. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical pharmacology. 2011; 81(10): 1171-82. [DOI:10.1016/j.bcp.2011.02.011]
90. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology. 2011; 29(4): 341-5. [DOI:10.1038/nbt.1807]
91. Andaloussi SE, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Advanced drug delivery reviews. 2013; 65(3): 391-7. [DOI:10.1016/j.addr.2012.08.008]
92. Huber CC, Wang H. Pathogenic and therapeutic role of exosomes in neurodegenerative disorders. Neural Regeneration Research. 2024; 19(1): 75-9. [DOI:10.4103/1673-5374.375320]
93. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of controlled release. 2015; 207: 18-30. [DOI:10.1016/j.jconrel.2015.03.033]
94. Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson's disease mouse model. PloS one. 2014; 9(9): e106867. [DOI:10.1371/journal.pone.0106867]
95. Kojima R, Bojar D, Rizzi G, Hamri GC-E, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nature communications. 2018; 9(1): 1305. [DOI:10.1038/s41467-018-03733-8]
96. Kalani A, Kamat P, Chaturvedi P, Tyagi S, Tyagi N. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life sciences. 2014; 107(1-2): 1-7. [DOI:10.1016/j.lfs.2014.04.018]
97. Kitamura Y, Kojima M, Kurosawa T, Sasaki R, Ichihara S, Hiraku Y, et al. Proteomic profiling of exosomal proteins for blood-based biomarkers in Parkinson's disease. Neuroscience. 2018; 392: 121-8. [DOI:10.1016/j.neuroscience.2018.09.017]
98. Mollenhauer B. Quantification of α-synuclein in cerebrospinal fluid: how ideal is this biomarker for Parkinson's disease? Parkinsonism & related disorders. 2014; 20: S76-S9. [DOI:10.1016/S1353-8020(13)70020-8]
99. Chung T, Deane K, Ghazi-Noori S, Rickards H, Clarke C. Systematic review of antidepressant therapies in Parkinson's disease. Parkinsonism & related disorders. 2003; 10(2): 59-65. [DOI:10.1016/S1353-8020(03)00108-1]
100. Jankovic J. Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry. 2008; 79(4): 368-76. [DOI:10.1136/jnnp.2007.131045]
101. Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? The Lancet Neurology. 2009; 8(4): 382-97. [DOI:10.1016/S1474-4422(09)70062-6]
102. Przedborski S. Inflammation and Parkinson's disease pathogenesis. Movement Disorders. 2010; 25(S1): S55-S7. [DOI:10.1002/mds.22638]
103. Chen H, O'Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson's disease. American journal of epidemiology. 2008; 167(1): 90-5. [DOI:10.1093/aje/kwm260]
104. Krämer‐Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, et al. Oligodendrocytes secrete exosomes containing major myelin and stress‐protective proteins: Trophic support for axons? PROTEOMICS-Clinical Applications. 2007; 1(11): 1446-61. [DOI:10.1002/prca.200700522]
105. Emanueli C, Shearn AI, Angelini GD, Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascular pharmacology. 2015; 71: 24-30. [DOI:10.1016/j.vph.2015.02.008]
106. Vivacqua G, Suppa A, Mancinelli R, Belvisi D, Fabbrini A, Costanzo M, et al. Salivary alpha-synuclein in the diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. Parkinsonism & related disorders. 2019; 63: 143-8. [DOI:10.1016/j.parkreldis.2019.02.014]
107. Rani K, Mukherjee R, Singh E, Kumar S, Sharma V, Vishwakarma P, et al. Neuronal exosomes in saliva of Parkinson's disease patients: A pilot study. Parkinsonism & related disorders. 2019; 67: 21-3. [DOI:10.1016/j.parkreldis.2019.09.008]
108. Fraser KB, Moehle MS, Alcalay RN, West AB, Consortium LC, Bressman S, et al. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology. 2016; 86(11): 994-9. [DOI:10.1212/WNL.0000000000002436]
109. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta neuropathologica. 2014; 128: 639-50. [DOI:10.1007/s00401-014-1314-y]
110. Jiang C, Hopfner F, Katsikoudi A, Hein R, Catli C, Evetts S, et al. Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism. Journal of Neurology, Neurosurgery & Psychiatry. 2020; 91(7): 720-9. [DOI:10.1136/jnnp-2019-322588]
111. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015; 6(35): 37043. [DOI:10.18632/oncotarget.6158]
112. Leng B, Sun H, Zhao J, Liu Y, Shen T, Liu W, et al. Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neuroscience Letters. 2020; 723: 134866. [DOI:10.1016/j.neulet.2020.134866]
113. Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 2015; 17(7): 932-9. [DOI:10.1016/j.jcyt.2014.07.013]
114. Akbarabadi P, Pourhosseini PS. Alzheimer's Disease: Narrative Review of Clinical Symptoms, Molecular Alterations, and Effective Physical and Biophysical Methods in its Improvement. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 105-18. [DOI:10.52547/shefa.11.1.105]
115. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology. 2015; 14(4): 388-405. [DOI:10.1016/S1474-4422(15)70016-5]
116. Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The impact of estradiol on neurogenesis and cognitive functions in Alzheimer's disease. Cellular and molecular neurobiology. 2020; 40: 283-99. [DOI:10.1007/s10571-019-00733-0]
117. Joe E, Ringman JM. Cognitive symptoms of Alzheimer's disease: clinical management and prevention. bmj. 2019; 367. [DOI:10.1136/bmj.l6217]
118. Quan X, Ma X, Li G, Fu X, Li J, Zeng L. Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer's disease. Biocell. 2023;(10) 47. [DOI:10.32604/biocell.2023.031226]
119. Cui G-h, Guo H-d, Li H, Zhai Y, Gong Z-b, Wu J, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immunity & Ageing. 2019; 16(1): 1-12. [DOI:10.1186/s12979-019-0150-2]
120. Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, et al. Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology. The American journal of pathology. 2002; 161(5): 1869-79. [DOI:10.1016/S0002-9440(10)64463-X]
121. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case‐control study. Alzheimer's & Dementia. 2015; 11(6): 600-7. [DOI:10.1016/j.jalz.2014.06.008]
122. Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. Journal of biological chemistry. 2012; 287(6), 3842-9. [DOI:10.1074/jbc.M111.277061]
123. Cone AS, Yuan X, Sun L, Duke LC, Vreones MP, Carrier AN, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer's disease-like phenotypes in a preclinical mouse model. Theranostics. 2021; 11(17): 8129. [DOI:10.7150/thno.62069]
124. Cheng á, Doecke JD, Sharples R, Villemagne VL, Fowler CJ, Rembach A, et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Molecular psychiatry. 2015; 20(10): 1188-96. [DOI:10.1038/mp.2014.127]
125. Goetzl EJ, Kapogiannis D, Schwartz JB, Lobach IV, Goetzl L, Abner EL, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease. The FASEB Journal. 2016; 30(12): 4141. [DOI:10.1096/fj.201600816R]
126. Liang X, Fa W, Wang N, Peng Y, Liu C, Zhu M, et al. Exosomal miR‐532‐5p induced by long‐term exercise rescues blood-brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell. 2023; 22(1): e13748. [DOI:10.1111/acel.13748]
127. Cai H, Pang Y, Wang Q, Qin W, Wei C, Li Y, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer's disease. Alzheimer's Research & Therapy. 2022; 14(1): 181. [DOI:10.1186/s13195-022-01133-1]
128. Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. Journal of Biological Chemistry. 2014; 289(35): 24488-98. [DOI:10.1074/jbc.M114.577213]
129. Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, et al. A potential function for neuronal exosomes: Sequestering intracerebral amyloid‐β peptide. FEBS letters. 2015; 589(1): 84-8. [DOI:10.1016/j.febslet.2014.11.027]
130. Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer's disease. Neurochemical Research. 2018; 43: 2165-77. [DOI:10.1007/s11064-018-2641-5]
131. Wang X, Yang G. Bone marrow mesenchymal stem cells‐derived exosomes reduce Aβ deposition and improve cognitive function recovery in mice with Alzheimer's disease by activating sphingosine kinase/sphingosine‐1‐phosphate signaling pathway. Cell Biology International. 2021; 45(4): 775-84. [DOI:10.1002/cbin.11522]
132. Liu S, Fan M, Xu J-X, Yang L-J, Qi C-C, Xia Q-R, Ge J-F. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. Journal of Neuroinflammation. 2022; 19(1): 35. [DOI:10.1186/s12974-022-02393-2]
133. Lee M, Ban J-J, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease. Brain research. 2018; 1691: 87-93. [DOI:10.1016/j.brainres.2018.03.034]
134. Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, et al. Exosomes derived from hypoxia‐preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. The FASEB Journal. 2018; 32(2): 654-68. [DOI:10.1096/fj.201700600R]
135. Pan J, He R, Huo Q, Shi Y, Zhao L. Brain microvascular endothelial cell derived exosomes potently ameliorate cognitive dysfunction by enhancing the clearance of Aβ through up-regulation of P-gp in mouse model of AD. Neurochemical research. 2020; 45: 2161-72. [DOI:10.1007/s11064-020-03076-1]
136. Chen Y-A, Lu C-H, Ke C-C, Chiu S-J, Jeng F-S, Chang C-W, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer's disease pathology and improve cognitive deficits. Biomedicines. 2021; 9(6): 594. [DOI:10.3390/biomedicines9060594]
137. Li N, Shu J, Yang X, Wei W, Yan A. Exosomes Derived From M2 Microglia Cells Attenuates Neuronal Impairment and Mitochondrial Dysfunction in Alzheimer's Disease Through the PINK1/Parkin Pathway. Front Cell Neurosci. 2022; 16: 874102. [DOI:10.3389/fncel.2022.874102]
138. Hao Y, Su C, Liu X, Sui H, Shi Y, Zhao L. Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer's disease. Biomaterials Advances. 2022; 136: 212770. [DOI:10.1016/j.bioadv.2022.212770]
139. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Scientific reports. 2013; 3(1): 1197. [DOI:10.1038/srep01197]
140. Peng H, Li Y, Ji W, Zhao R, Lu Z, Shen J, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson's disease. ACS nano. 2022; 16(1): 869-84. [DOI:10.1021/acsnano.1c08473]
141. Qin J, Xu Q. Functions and application of exosomes. Acta Pol Pharm. 2014; 71(4): 537-43.
142. Liu SF, Li LY, Zhuang JL, Li MM, Ye LC, Chen XR, et al. Update on the application of mesenchymal stem cell-derived exosomes in the treatment of Parkinson's disease: A systematic review. Front Neurol. 2022; 13: 950715. [DOI:10.3389/fneur.2022.950715]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi H R, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. Shefaye Khatam 2024; 12 (2) :87-101
URL: http://shefayekhatam.ir/article-1-2451-fa.html

مرادی حمید‌ رضا، عبدالهی نژاد سحر، حیدریان سهراب. نقش اگزوزوم‌ها در بیماری‌زایی، تشخیص و درمان بیماری‌‌های پارکینسون و آلزایمر. مجله علوم اعصاب شفای خاتم. 1403; 12 (2) :87-101

URL: http://shefayekhatam.ir/article-1-2451-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( بهار 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 52 queries by YEKTAWEB 4660