1. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb perspect med. 2015; 5(6): 22-9. [ DOI:10.1101/cshperspect.a022426] 2. Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, et al. Ascorbic acid facilitates neural regeneration after sciatic nerve crush injury. Front Cell Neurosci. 2019; 13(9): 108-9. [ DOI:10.3389/fncel.2019.00108] 3. Thom M, Boldrini M, Bundock E, Sheppard MN, Devinsky O. The past, present and future challenges in epilepsy‐related and sudden deaths and biobanking. Neuropathol Appl Neurobiol. 2018; 44(1): 32-55. [ DOI:10.1111/nan.12453] 4. Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012; 11(9): 792-802. [ DOI:10.1016/S1474-4422(12)70153-9] 5. Jia H, Wang Y, Chen J, Li JP, Han HQ, Tong XJ, et al. Combination of BMSCs‐laden acellular nerve xenografts transplantation and G‐CSF administration promotes sciatic nerve regeneration. Synapse. 2019; 73(7): 22-5. [ DOI:10.1002/syn.22093] 6. Kwan P, Brodie MJ. Early identification of refractory epilepsy. NEJM. 2000; 342(5): 314-9. [ DOI:10.1056/NEJM200002033420503] 7. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7(1): 30-37. [ DOI:10.1038/nrneurol.2010.178] 8. Chen L, Wei Y, Zhao S, Zhang M, Yan X, Gao X, et al. Antitumor and immunomodulatory activities of total flavonoids extract from persimmon leaves in H22 liver tumor-bearing mice. Sci Rep. 2018; 8(1): 10-9. [ DOI:10.1038/s41598-018-28440-8] 9. He N, Wang P, Niu Y, Chen J, Li C, Kang W-y. Evaluation antithrombotic activity and action mechanism of myricitrin. Ind Crops Prod. 2019; 12(9): 536-41. [ DOI:10.1016/j.indcrop.2018.12.036] 10. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxidative Med Cell Longev. 2018; 20(1): 8-22. [ DOI:10.1155/2018/7496936] 11. Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact. 2015; 23(10): 21-9. [ DOI:10.1016/j.cbi.2015.01.030] 12. Zhang B, Shen Q, Chen Y, Pan R, Kuang S, Liu G, et al. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep. 2017; 11(7): 44-9. [ DOI:10.1038/srep44239] 13. Lei Y. Myricitrin decreases traumatic injury of the spinal cord and exhibits antioxidant and anti‑inflammatory activities in a rat model via inhibition of COX‑2, TGF‑β1, p53 and elevation of Bcl‑2/Bax signaling pathway. Mol Med Rep. 2017; 16(5): 7699-705. [ DOI:10.3892/mmr.2017.7567] 14. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol. 2019; 10(5): 48-6. [ DOI:10.3389/fphys.2019.00486] 15. Patel DC, Wallis G, Dahle EJ, McElroy PB, Thomson KE, Tesi RJ, et al. Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. Eneuro. 2017; 4(2): 22-9. [ DOI:10.1523/ENEURO.0105-17.2017] 16. Shandra A, Godlevsky L, Vastyanov R, Oleinik A, Konovalenko V, Rapoport E, et al. The role of TNF-α in amygdala kindled rats. Neurosci Res. 2002; 42(2): 147-53. [ DOI:10.1016/S0168-0102(01)00309-1] 17. Guzzo EFM, Lima KR, Vargas CR, Coitinho AS. Effect of dexamethasone on seizures and inflammatory profile induced by Kindling Seizure Model. J Neuroimmunol. 2018; 32(5): 92-8. [ DOI:10.1016/j.jneuroim.2018.10.005] 18. Meyer E, Mori MA, Campos AC, Andreatini R, Guimarães FS, Milani H, et al. Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice. Behav Brain Res. 2017; 31(6): 59-65. [ DOI:10.1016/j.bbr.2016.08.048] 19. Cassano T, Pace L, Bedse G, Michele Lavecchia A, De Marco F, Gaetani S, et al. Glutamate and mitochondria: two prominent players in the oxidative stress-induced neurodegeneration. Curr Alzheimer Res. 2016; 13(2): 185-97. [ DOI:10.2174/1567205013666151218132725] 20. Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Adv Pharm Bull. 2020; 11(3): 450-7. [ DOI:10.34172/apb.2021.052] 21. Aran S, Zahri S, Asadi A, Khaksar F, Abdolmaleki A. Hair follicle stem cells differentiation into bone cells on collagen scaffold. Cell Tissue Bank. 2020; 21(2): 181-8. [ DOI:10.1007/s10561-020-09812-9] 22. Tamjid M, Mahmoudi F, Abdolmaleki A, Mirzaee S. Preparation of omega-3 coated iron oxide nanoparticles and its effect on liver, renal and splenic function in rats: An experimental study. J Rafsanjan Univ Med Sci. 2021; 20 (8): 879-90. [ DOI:10.52547/jrums.20.8.879] 23. Pereira M, Siba I, Chioca L, Correia D, Vital M, Pizzolatti M, et al. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011; 35(7): 1636-44. [ DOI:10.1016/j.pnpbp.2011.06.002] 24. Feng, Y., Cao, Y., Qu, Z., Janjua, T. I., & Popat, A. Virus-like Silica Nanoparticles Improve Permeability of Macromolecules across the Blood-Brain Barrier In Vitro. Pharmaceutics. 2023; 38(8): 16-46. [ DOI:10.3390/pharmaceutics15092239] 25. Zhang, W., Zhu, D., Tong, Z., Peng, B., Cheng, X., Esser, L., & Voelcker, N. H. Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood-Brain Barrier by Porous Silicon Nanoparticles. Pharmaceutics. 2023; 30(3): 1636-47. 26. Song, X., Qian, H., & Yu, Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. Small, 2023; 43(7): 13-64. [ DOI:10.1002/smll.202302613] 27. Xie, L., Lin, H., Lv, L., Zhang, W., Feng, F., Liu, F., ... & Han, L. Rhynchophylline-encapsulating core-shell nanoparticles to overcome blood-brain-barrier and inhibit drug efflux for efficient anti-Parkinson therapy. Applied Materials Today. 2023; 35(4): 123-67. [ DOI:10.1016/j.apmt.2022.101715] 28. Rodgers, T. M., Muzzio, N., Valero, A., Ahmad, I., Ludtke, T. U., Moya, S. E., & Romero, G. Poly (β-amino ester) Nanoparticles Modified with a Rabies-Virus-Derived Peptide for the Delivery of ASCL1 across a 3D In Vitro Model of the Blood-Brain Barrier. ACS Applied Nano Materials. 2023; 36(7): 136-44. [ DOI:10.1021/acsanm.3c00651] 29. Dong, C. Y., Huang, Q. X., Cheng, H., Zheng, D. W., Hong, S., Yan, Y., ... & Zhang, X. Z. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma. Advanced Materials. 2022; 35(13): 166-49. [ DOI:10.1002/adma.202109213] 30. Kumari, A., Vyas, V., & Kumar, S. Synthesis, characterization, and applications of gold nanoparticles in development of plasmonic optical fiber-based sensors. Nanotechnology. 2022; 33(3): 16-67. 31. Sakthi Devi, R., Girigoswami, A., Siddharth, M., & Girigoswami, K. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology. 2022; 34(6): 16-44. 32. Ahmed, R., Uddin, M. K., Quddus, M. A., Samad, M. Y. A., Hossain, M. A., & Haque, A. N. A. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae. 2023; 37(9): 132-55. [ DOI:10.3390/horticulturae9020162]
|