[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 10, Issue 2 (Spring 2022) ::
Shefaye Khatam 2022, 10(2): 111-125 Back to browse issues page
Roles of different types of stem cells in treating neurodegenerative disease
Fatemeh Behdarvand , Mohammad Shahverdi Shahraki , Zahra Sourani , Mostafa Modarres Mousavi , Sadegh Shirian *
a. Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran. b. Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Lab, Shiraz, Iran , Shirian85@gmail.com
Abstract:   (1482 Views)
Introduction: Central nervous system (CNS) lesions are created by the destruction of nerve cells and neural tissue following trauma, bleeding, and inflammation, which can lead to permanent paralysis disability, or death. Many researchers are trying to find effective approaches for the treatment of neurodegenerative disease (ND) through the application of various stem cells. Although they have recently made important advancements in treating CNS injuries, no definite cure has been found for ND. In the present study, the role of stem cells in the treatment of ND has been reviewed. An overview is provided of the types and characteristics of various stem cells as well as their advantages and disadvantages in treating ND. Conclusion: Different types of stem cells with high potential for resolving neural system problems are currently increasing the hope of using new therapies to treat ND. Despite the high cost of treatment and potential side effects, stem cell treatments face numerous challenges, and further research is needed to improve stem cell efficiency in clinical environments.
Keywords: Neurodegenerative Diseases, Therapeutics, Stem Cells
Full-Text [PDF 649 kb]   (1744 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Ankeny DP, McTigue DM, Jakeman LB. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Experimental neurology. 2004; 190(1): 17-31. [DOI:10.1016/j.expneurol.2004.05.045]
2. Ide C, Kitada M, Chakrabortty S, Taketomi M, Matsumoto N, Kikukawa S, et al. Grafting of choroid plexus ependymal cells promotes the growth of regenerating axons in the dorsal funiculus of rat spinal cord: a preliminary report. Experimental neurology. 2001; 167(2): 242-51. [DOI:10.1006/exnr.2000.7566]
3. Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, et al. Migration and differentiation of nuclear fluorescence‐labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003; 23(3): 169-80. [DOI:10.1046/j.1440-1789.2003.00496.x]
4. Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia. 2001; 35(1): 26-34. [DOI:10.1002/glia.1067]
5. Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport. 2004; 15(7): 1105-8. [DOI:10.1097/00001756-200405190-00004]
6. Jones LL, Oudega M, Bunge MB, Tuszynski MH. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. The Journal of physiology. 2001; 533(1): 83-9. [DOI:10.1111/j.1469-7793.2001.0083b.x]
7. ramazi s, arani f, safaei a, abbasi z, heidari z, Ghasemian nafchi h, et al. The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions. The Neuroscience Journal of Shefaye Khatam. 2021; 9(2): 119-39. [DOI:10.52547/shefa.9.2.119]
8. SAHAB NS, MOHAMMAD SS, Kazemi H, MODARRES MSM, Aligholi H. Effect of injured brain extract on proliferation of neural stem cells cultured in 3-dimensional environment. 2015.
9. Hajali V, Moradi HR, Sahab Negah S. Neurotransmitters Play as a Key Role in Adult Neurogenesis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(4): 61-74. [DOI:10.29252/shefa.6.4.61]
10. Jabbarian M, Darvishi M, BARATI DP, Babakhani A, JAHANBAZI JAA, Roshanaei K. Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Neuron-Like Cells Affected by Extract of Ginger Officinale. 2017. [DOI:10.18869/acadpub.shefa.5.2.62]
11. Webb AA, Ngan S, Fowler D. Spinal cord injury II: Prognostic indicators, standards of care, and clinical trials. The Canadian Veterinary Journal. 2010; 51(6): 598.
12. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem cells. 2001; 19(3): 180-92. [DOI:10.1634/stemcells.19-3-180]
13. Aeschbach R, Löliger J, Scott B, Murcia A, Butler J, Halliwell B, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and chemical toxicology. 1994; 32(1): 31-6. [DOI:10.1016/0278-6915(84)90033-4]
14. Aktan F, Henness S, Tran VH, Duke CC, Roufogalis BD, Ammit AJ. Gingerol metabolite and a synthetic analogue Capsarol™ inhibit macrophage NF-κB-mediated iNOS gene expression and enzyme activity. Planta medica. 2006; 72(08): 727-34. [DOI:10.1055/s-2006-931588]
15. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and chemical Toxicology. 2008; 46(2): 409-20. [DOI:10.1016/j.fct.2007.09.085]
16. Hassanpourezatti M, Nikookar Z. Stem Cells and their Applications for the Treatment of Injuries to the Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 116-29. [DOI:10.52547/shefa.9.3.116]
17. Lindvall O, Björklund A. Cell replacement therapy: helping the brain to repair itself. NeuroRx. 2004; 1(4): 379. [DOI:10.1602/neurorx.1.4.379]
18. Gage FH. Mammalian neural stem cells. Science. 2000; 287(5457): 1433-8. [DOI:10.1126/science.287.5457.1433]
19. Ourednik V, Ourednik J, Flax JD, Zawada WM, Hutt C, Yang C, et al. Segregation of human neural stem cells in the developing primate forebrain. Science. 2001; 293(5536): 1820-4. [DOI:10.1126/science.1060580]
20. Li R, Mather JP. Culture of pluripotent neural epithelial progenitor cells from e9 rat embryo. Methods in cell biology. 2008; 86: 227-40. [DOI:10.1016/S0091-679X(08)00009-5]
21. Jesuraj NJ, Santosa KB, Macewan MR, Moore AM, Kasukurthi R, Ray WZ, et al. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle & nerve. 2014; 49(2): 267-76. [DOI:10.1002/mus.23885]
22. Ghayour MB, Abdolmaleki A, Fereidoni M. Use of stem cells in the regeneration of peripheral nerve injuries: an overview. The Neuroscience Journal of Shefaye Khatam. 2015; 3(1): 84-98. [DOI:10.18869/acadpub.shefa.3.1.84]
23. Seghatoleslam M, Hosseini M. Potential of Stem Cells in the Treatment of Nervous System Disorders. The Neuroscience Journal of Shefaye Khatam. 2015; 3(1): 99-114. [DOI:10.18869/acadpub.shefa.3.1.99]
24. Rodrigues MCO, Rodrigues AA, Glover LE, Voltarelli J, Borlongan CV. Peripheral nerve repair with cultured schwann cells: getting closer to the clinics. The Scientific World Journal. 2012. [DOI:10.1100/2012/413091]
25. Garcı́a Ro, Aguiar J, Alberti E, de la Cuétara K, Pavón N. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochemical and biophysical research communications. 2004; 316(3): 753-4. [DOI:10.1016/j.bbrc.2004.02.111]
26. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proceedings of the National Academy of Sciences. 2003; 100(suppl 1): 11854-60. [DOI:10.1073/pnas.1834196100]
27. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893): 41-9. [DOI:10.1038/nature00870]
28. Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem cells. 2008; 26(5): 1356-65. [DOI:10.1634/stemcells.2007-0333]
29. Yohn DC, Miles GB, Rafuse VF, Brownstone RM. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. Journal of Neuroscience. 2008; 28(47): 12409-18. [DOI:10.1523/JNEUROSCI.1761-08.2008]
30. Craff MN, Zeballos JL, Johnson TS, Ranka MP, Howard R, Motarjem P, et al. Embryonic stem cell-derived motor neurons preserve muscle after peripheral nerve injury. Plastic and reconstructive surgery. 2007; 119(1): 235-45. [DOI:10.1097/01.prs.0000244863.71080.f0]
31. Brüstle O. Building brains: neural chimeras in the study of nervous system development and repair. Brain Pathology. 1999; 9(3): 527-45. [DOI:10.1111/j.1750-3639.1999.tb00540.x]
32. Estiri H, Fallah A, Movahedin M. Mouse Embryonic Stem Cells Differentiation to Neuron-like Cells. The Neuroscience Journal of Shefaye Khatam. 2013; 1(4): 9-16. [DOI:10.18869/acadpub.shefa.1.4.9]
33. Edalatmanesh MA. A Review of the Breast Milk Properties with Emphasis on the Neuroprotective Potential of Human Breast-Derived Stem Cells. The Neuroscience Journal of Shefaye Khatam. 2021; 9(2): 140-50. [DOI:10.52547/shefa.9.2.140]
34. Tat PA, Sumer H, Jones KL, Upton K, Verma PJ. The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell transplantation. 2010; 19(5): 525-36. [DOI:10.3727/096368910X491374]
35. Shtrichman R, Germanguz I, Eldor JI. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Current molecular medicine. 2013; 13(5): 792-805. [DOI:10.2174/1566524011313050010]
36. Kokaia Z, Tornero D, Lindvall O. Transplantation of reprogrammed neurons for improved recovery after stroke. Progress in brain research. 2017; 231: 245-63. [DOI:10.1016/bs.pbr.2016.11.013]
37. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011; 471(7336): 63-7. [DOI:10.1038/nature09805]
38. Lee Y-S, Livingston Arinzeh T. Electrospun nanofibrous materials for neural tissue engineering. Polymers. 2011; 3(1): 413-26. [DOI:10.3390/polym3010413]
39. Bodega G, Suarez I, Rubio M, Fernandez B. Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry. 1994; 102(2): 113-22. [DOI:10.1007/BF00269015]
40. Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells-sources and clinical applications. Transfusion Medicine and Hemotherapy. 2008; 35(4): 272-7. [DOI:10.1159/000142333]
41. Borhani-Haghighi M, Alipour F, Eshaghabadi A. Expression of Hepatocyte Markers in Wharton's Jelly Mesenchymal Stem Cells Using Mouse Liver Cell Extract. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 1-8. [DOI:10.18869/acadpub.shefa.5.2.S1.1]
42. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. science. 1999; 284(5411): 143-7. [DOI:10.1126/science.284.5411.143]
43. Shen Y, Venkat P, Chopp M, Chen J. Mesenchymal stromal cell therapy of stroke. Cellular and Molecular Approaches to Regeneration and Repair: Springer; 2018. p. 217-37. [DOI:10.1007/978-3-319-66679-2_11]
44. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Molecular Therapy. 2005; 11(1): 96-104. [DOI:10.1016/j.ymthe.2004.09.020]
45. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem cells. 2010; 28(3): 585-96. [DOI:10.1002/stem.269]
46. Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, et al. Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PloS one. 2015; 10(6): e0127302. [DOI:10.1371/journal.pone.0127302]
47. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. Journal of neurotrauma. 2012; 29(8): 1614-25. [DOI:10.1089/neu.2011.2109]
48. Javdani M, Barzegar-Bafrouei A. The Key Role of Macrophages and Monocytes in Spinal Cord Injury: Development of Novel Therapeutic Approaches. The Neuroscience Journal of Shefaye Khatam. 2020; 8(4): 90-102. [DOI:10.29252/shefa.8.4.90]
49. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in biotechnology. 2006; 24(4): 150-4. [DOI:10.1016/j.tibtech.2006.01.010]
50. Barfi E, Tirraihi T, Darabi S. Transdifferentiation of Adipose Derived Stem Cells into Neural Stem/Progenitor Cells by Neurosphere Cultivation Assay. The Neuroscience Journal of Shefaye Khatam. 2014; 2(1): 5-16. [DOI:10.18869/acadpub.shefa.2.1.5]
51. Chung C-S, Fujita N, Kawahara N, Yui S, Nam E, Nishimura R. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. Journal of Veterinary Medical Science. 2013: 12-0470. [DOI:10.1292/jvms.12-0470]
52. Sowa Y, Imura T, Numajiri T, Nishino K, Fushiki S. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem cells and development. 2012; 21(11): 1852-62. [DOI:10.1089/scd.2011.0403]
53. Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, et al. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell‐derived laminin. Glia. 2011; 59(2): 267-77. [DOI:10.1002/glia.21099]
54. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Engineering Part A. 2012; 18(11-12): 1264-72. [DOI:10.1089/ten.tea.2011.0491]
55. Arzanipur Y, Abdolmaleki A, Asadi A, Zahri S. Synthesis, Characterization, Evaluation of Supportive Properties, and Neuroprotective Effects of Cerium Oxide Nanoparticles as a Candidate for Neural Tissue Engineering. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 55-63. [DOI:10.52547/shefa.9.3.55]
56. Cheng K-H, Kuo T-L, Kuo K-K, Hsiao C-C. Human adipose-derived stem cells: Isolation, characterization and current application in regeneration medicine. Genomic Medicine, Biomarkers, and Health Sciences. 2011; 3(2): 53-62. [DOI:10.1016/j.gmbhs.2011.08.003]
57. Huang T, He D, Kleiner G, Kuluz JT. Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. The journal of spinal cord medicine. 2007; 30(sup1): S35-S40. [DOI:10.1080/10790268.2007.11753967]
58. Wang C-Y, Yang F, He X-P, Je H-S, Zhou J-Z, Eckermann K, et al. Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. Journal of Biological Chemistry. 2002; 277(12): 10614-25. [DOI:10.1074/jbc.M106116200]
59. Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World journal of stem cells. 2012; 4(10): 101. [DOI:10.4252/wjsc.v4.i10.101]
60. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood‐derived mesenchymal stem cells in vitro. Immunology. 2009; 126(2): 220-32. [DOI:10.1111/j.1365-2567.2008.02891.x]
61. Talwadekar MD, Kale VP, Limaye LS. Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts-a paired sample study. Scientific reports. 2015; 5(1): 1-12. [DOI:10.1038/srep15784]
62. Borhani-Haghighi M, Talaei-Khozani T, Ayatollahi M, Vojdani Z. Wharton's Jelly-derived mesenchymal stem cells can differentiate into hepatocyte-like cells by HepG2 cell line extract. Iranian journal of medical sciences. 2015; 40(2): 143.
63. Gökhan Ş, Mehler MF. Basic and clinical neuroscience applications of embryonic stem cells. The Anatomical Record: An Official Publication of the American Association of Anatomists. 2001; 265(3): 142-56. [DOI:10.1002/ar.1136]
64. Alessandri G, Emanueli C, Madeddu P. Genetically engineered stem cell therapy for tissue regeneration. Annals of the New York Academy of Sciences. 2004; 1015(1): 271-84. [DOI:10.1196/annals.1302.023]
65. Khaksar Z, Negah SS, Sadeghi SM. Effects of a self-assembling peptide nanofiber containing laminin motif on survival and proliferation of embryonic rat neural stem cells. Shefaye Khatam. 2016; 4(2): 55-64. [DOI:10.18869/acadpub.shefa.4.2.55]
66. Heine W, Conant K, Griffin JW, Höke A. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Experimental neurology. 2004; 189(2): 231-40. [DOI:10.1016/j.expneurol.2004.06.014]
67. Xiong Y, Zeng Y-S, Zeng C-G, Du B-l, He L-M, Quan D-P, et al. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials. 2009; 30(22): 3711-22. [DOI:10.1016/j.biomaterials.2009.03.046]
68. Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, et al. A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochemical and biophysical research communications. 2008; 372(4): 520-4. [DOI:10.1016/j.bbrc.2008.05.039]
69. Bjugstad KB, Teng YD, Redmond Jr DE, Elsworth JD, Roth RH, Cornelius SK, et al. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease. Experimental neurology. 2008; 211(2): 362-9. [DOI:10.1016/j.expneurol.2008.01.025]
70. Baghishani F, Sahab Negah S. The role of neurogenesis in anxiety disorders. Shefaye Khatam. 2017; 5(2): 98-109. [DOI:10.18869/acadpub.shefa.5.2.98]
71. Negah SS, Eshaghabadi A, Mohammadzadeh E. The neuroprotective role of progesterone in traumatic brain injury; reduction of inflammatory cytokines. Neurosci J Shefaye Khatam. 2015; 3: 139-50. [DOI:10.18869/acadpub.shefa.3.4.139]
72. Pasand Mozhdeh H, Zeynali B, Aligholi H, Kashani Radgerdi I, Sahab Negah S, Hassanzadeh G. The effect of intracerebroventricular administration of streptozocin on cell proliferation in subventricular zone stem cells in a rat model of alzheimer's disease. The Neuroscience Journal of Shefaye Khatam. 2015; 3(4): 80-6. [DOI:10.18869/acadpub.shefa.3.4.80]
73. Jahan-Abad AJ, Morteza-Zadeh P, Negah SS, Gorji A. Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna journal of phytomedicine. 2017; 7(4): 376.
74. Alexander T, Arnold R, Hiepe F, Radbruch A. Resetting the immune system with immunoablation and autologous haematopoietic stem cell transplantation in autoimmune diseases. Clin Exp Rheumatol. 2016; 34(4 Suppl 98): 53-7.
75. Simonsen CS, Hansen G, Piehl F, Edland A. Chronic inflammatory demyelinating polyradiculoneuropathy occurring after autologous haematopoietic stem cell transplantation for multiple sclerosis. Multiple Sclerosis Journal-Experimental, Translational and Clinical. 2016; 2: 2055217316658304. [DOI:10.1177/2055217316658304]
76. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell stem cell. 2013; 12(2): 252-64. [DOI:10.1016/j.stem.2012.12.002]
77. Greenberg ML, Weinger JG, Matheu MP, Carbajal KS, Parker I, Macklin WB, et al. Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences. 2014; 111(22): E2349-E55. [DOI:10.1073/pnas.1406658111]
78. Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J, et al. Circulating CD133+ CD34+ progenitor cells inversely correlate with soluble ICAM-1 in early ischemic stroke patients. Journal of Translational Medicine. 2011; 9(1): 1-7. [DOI:10.1186/1479-5876-9-145]
79. Paczkowska E, Gołąb-Janowska M, Bajer-Czajkowska A, Machalińska A, Ustianowski P, Rybicka M, et al. Increased circulating endothelial progenitor cells in patients with haemorrhagic and ischaemic stroke: the role of endothelin-1. Journal of the Neurological Sciences. 2013; 325(1-2): 90-9. [DOI:10.1016/j.jns.2012.12.005]
80. Vazifehkhah S, Karimzadeh F. Parkinson Disease: from Pathophysiology to the Animal Models. The Neuroscience Journal of Shefaye Khatam. 2016; 4(3): 91-102. [DOI:10.18869/acadpub.shefa.4.3.91]
81. Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. The lancet neurology. 2009; 8(5): 491-500. [DOI:10.1016/S1474-4422(09)70061-4]
82. Abd-Elhalem SS, Haggag NZ, El-Shinnawy NA. Bone marrow mesenchymal stem cells suppress IL-9 in adjuvant-induced arthritis. Autoimmunity. 2018; 51(1): 25-34. [DOI:10.1080/08916934.2018.1428956]
83. Moradian H, Keshvari H, Fasehee H, Dinarvand R, Faghihi S. Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: a potential tool for treatment of Parkinson's disease. Materials Science and Engineering: C. 2017; 76: 934-43. [DOI:10.1016/j.msec.2017.02.178]
84. Arbab AS, Frenkel V, Pandit SD, Anderson SA, Yocum GT, Bur M, et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells. 2006; 24(3): 671-8. [DOI:10.1634/stemcells.2005-0017]
85. Alfonso J, Agüero F, Sanchez DO, Flugge G, Fuchs E, Frasch AC, et al. Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. Journal of neuroscience research. 2004; 78(5): 702-10. [DOI:10.1002/jnr.20328]
86. Ahmed HH, Salem AM, Atta HM, Eskandar EF, Farrag ARH, Ghazy MA, et al. Updates in the pathophysiological mechanisms of Parkinson's disease: emerging role of bone marrow mesenchymal stem cells. World journal of stem cells. 2016; 8(3): 106. [DOI:10.4252/wjsc.v8.i3.106]
87. Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson's disease in a rhesus monkey model. PloS one. 2013; 8(5): e64000. [DOI:10.1371/journal.pone.0064000]
88. Choi HS, Kim HJ, Oh J-H, Park H-G, Ra JC, Chang K-A, et al. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiology of Aging. 2015; 36(10): 2885-92. [DOI:10.1016/j.neurobiolaging.2015.06.022]
89. Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond Jr D, Taylor HS. Endometrial stem cell transplantation in MPTP‐exposed primates: an alternative cell source for treatment of P arkinson's disease. Journal of cellular and molecular medicine. 2015; 19(1): 249-56. [DOI:10.1111/jcmm.12433]
90. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harbor perspectives in medicine. 2012; 2(8): a006239. [DOI:10.1101/cshperspect.a006239]
91. Lazarov O, Marr RA. Neurogenesis and Alzheimer's disease: at the crossroads. Experimental neurology. 2010; 223(2): 267-81. [DOI:10.1016/j.expneurol.2009.08.009]
92. Babaei Abraki S, Chavoshi-Nezhad S. Alzheimer's Disease: The Effect of Nrf2 Signaling Pathway on Cell Death Caused by Oxidative Stress. The Neuroscience Journal of Shefaye Khatam. 2015; 3(1): 145-56. [DOI:10.18869/acadpub.shefa.3.1.145]
93. Calderon-Garcidueñas AL, Duyckaerts C. Alzheimer disease. Handbook of clinical neurology. 2018; 145: 325-37. [DOI:10.1016/B978-0-12-802395-2.00023-7]
94. Lee NK, Yang J, Chang EH, Park SE, Lee J, Choi SJ, et al. Intra-arterially delivered mesenchymal stem cells are not detected in the brain parenchyma in an Alzheimer's disease mouse model. PLoS One. 2016; 11(5): e0155912. [DOI:10.1371/journal.pone.0155912]
95. Xie Z-H, Liu Z, Zhang X-R, Yang H, Wei L-F, Wang Y, et al. Wharton's Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model. Clinical and experimental medicine. 2016; 16(1): 89-98. [DOI:10.1007/s10238-015-0375-0]
96. Li W, Li K, Gao J, Yang Z. Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model. Stem Cell Research & Therapy. 2018; 9(1): 1-16. [DOI:10.1186/s13287-017-0756-2]
97. Yang H, Xie ZH, Wei LF, Yang HN, Yang SN, Zhu ZY, et al. Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model. Stem cell research & therapy. 2013; 4(4): 1-14. [DOI:10.1186/scrt227]
98. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology. 2015; 14(4): 388-405. [DOI:10.1016/S1474-4422(15)70016-5]
99. Yang H, Yang H, Xie Z, Wei L, Bi J. Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PloS one. 2013; 8(7): e69129. [DOI:10.1371/journal.pone.0069129]
100. Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behavioural Brain Research. 2017; 320: 291-301. [DOI:10.1016/j.bbr.2016.12.021]
101. Nobakht M, Najafzadeh N, Safari M, Rahbar Roshandel N, Delaviz H, Joghataie MT, et al. Bulge cells of rat hair follicles: isolation, cultivation, morphological and biological features. Yakhteh. 2010: 51-8.
102. Tomokiyo A, Hynes K, Gronthos S, Wada N, Bartold PM. Is There a Role for Neural Crest Stem Cells in Periodontal Regeneration? Current Oral Health Reports. 2015; 2(4): 275-81. [DOI:10.1007/s40496-015-0073-8]
103. Sakaue M, Sieber-Blum M. Human epidermal neural crest stem cells as a source of Schwann cells. Development. 2015; 142(18): 3188-97. [DOI:10.1242/dev.123034]
104. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of neurology. 2010; 67(10): 1187-94. [DOI:10.1001/archneurol.2010.248]
105. Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. The Lancet Neurology. 2011; 10(7): 649-56. [DOI:10.1016/S1474-4422(11)70121-1]
106. Ghaemi A, Babaei Abraki S, Ghasemi S, Sajadian A, Togha M. Immunomodulatory Role of Mesenchymal Stem Cells against Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2014; 2(4): 60-70. [DOI:10.18869/acadpub.shefa.2.4.60]
107. Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PloS one. 2011; 6(9): e25171. [DOI:10.1371/journal.pone.0025171]
108. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nature neuroscience. 2012; 15(6): 862-70. [DOI:10.1038/nn.3109]
109. Lutz SE, Lengfeld J, Agalliu D. Stem cell-based therapies for multiple sclerosis: recent advances in animal models and human clinical trials. Regenerative medicine. 2014; 9(2): 129-32. [DOI:10.2217/rme.14.1]
110. Alavian F, Ghasemi S. Stem Cell-Based Stroke Treatment. The Neuroscience Journal of Shefaye Khatam. 2019; 8(1): 99-110. [DOI:10.29252/shefa.8.1.99]
111. Yanagisawa D, Qi M, Kim D-h, Kitamura Y, Inden M, Tsuchiya D, et al. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neuroscience letters. 2006; 407(1): 74-9. [DOI:10.1016/j.neulet.2006.08.007]
112. Tae-Hoon L, Yoon-Seok L. Transplantation of mouse embryonic stem cell after middle cerebral artery occlusion. Acta Cirúrgica Brasileira. 2012; 27(4): 333-9. [DOI:10.1590/S0102-86502012000400009]
113. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. BioMed research international. 2014; 2014. [DOI:10.1155/2014/468748]
114. Yousuf Y, Amini-Nik S, Jeschke MG. Use of Stem Cells in Acute and Complex Wounds. Pancreas, Kidney and Skin Regeneration: Springer; 2017. p. 195-226. [DOI:10.1007/978-3-319-55687-1_9]
115. Dixon KJ, Theus MH, Nelersa CM, Mier J, Travieso LG, Yu T-S, et al. Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. Journal of neurotrauma. 2015; 32(11): 753-64. [DOI:10.1089/neu.2014.3390]
116. Leu S, Lin Y-C, Yuen C-M, Yen C-H, Kao Y-H, Sun C-K, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. Journal of translational medicine. 2010; 8(1): 1-16. [DOI:10.1186/1479-5876-8-63]
117. Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, et al. Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabilitation and neural repair. 2015; 29(1): 80-9. [DOI:10.1177/1545968314525856]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behdarvand F, Shahverdi Shahraki M, Sourani Z, Modarres Mousavi M, Shirian S. Roles of different types of stem cells in treating neurodegenerative disease. Shefaye Khatam 2022; 10 (2) :111-125
URL: http://shefayekhatam.ir/article-1-2319-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (Spring 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4657