[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 11, Issue 1 (Winter 2022) ::
Shefaye Khatam 2022, 11(1): 119-132 Back to browse issues page
The Role of microRNA in the Pathogenesis of Schizophrenia
Zahra Ghasemzadeh , Sedigheh Khanjani-Jelodar , Farzaneh Nazari-Serenjeh * , Narjes Lotfi Ghadikolaii
Department of Biology, Payame Noor University (PNU), Tehran, Iran , nazari_farzaneh@yahoo.com
Abstract:   (1035 Views)
Introduction: MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as highly potent post-transcriptional regulators of gene expression. Over past decades, miRNAs were found to modulate brain development and brain function. Schizophrenia (SCZ) is a complex and severe psychiatric disorder and both genetic and environmental risk factors are implicated in SCZ. Recent studies have identified that dysregulation of miRNAs expression contributes to the pathogenesis of SCZ. Conclusion: Identification of SCZ- related miRNAs may be potential biomarkers in the diagnosis and more efficient therapies of SCZ. In this review, we provide an overview of the recent findings of the SCZ-associated dysregulation of miRNAs.
 
Keywords: MicroRNAs, Schizophrenia, Biomarkers
Full-Text [PDF 1482 kb]   (1196 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology. 2018; 9: 402. [DOI:10.3389/fendo.2018.00402]
2. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature reviews Molecular cell biology. 2014;15(8):509-24. [DOI:10.1038/nrm3838]
3. Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells. 2021;10(10):2679. [DOI:10.3390/cells10102679]
4. Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia,"just the facts" what we know in 2008. 2. Epidemiology and etiology. Schizophrenia research. 2008; 102(1-3): 1-18. [DOI:10.1016/j.schres.2008.04.011]
5. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia,"just the facts" 4. Clinical features and conceptualization. Schizophrenia research. 2009; 110(1-3): 1-23. [DOI:10.1016/j.schres.2009.03.005]
6. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of general psychiatry. 2003; 60(12): 1187-92. [DOI:10.1001/archpsyc.60.12.1187]
7. Dean K, Murray RM. Environmental risk factors for psychosis. Dialogues in clinical neuroscience. 2005; 7(1): 69. [DOI:10.31887/DCNS.2005.7.1/kdean]
8. Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M, Consortium SWG of the PG. Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA psychiatry. 2016; 73(4): 369-77. [DOI:10.1001/jamapsychiatry.2015.3018]
9. Consortium SPGWAS (GWAS). Genome-wide association study identifies five new schizophrenia loci. Nature genetics. 2011; 43(10): 969. [DOI:10.1038/ng.940]
10. Goes FS, McGrath J, Avramopoulos D, Wolyniec P, Pirooznia M, Ruczinski I, et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2015; 168(8): 649-59. [DOI:10.1002/ajmg.b.32349]
11. Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 511(7510): 421. [DOI:10.1038/nature13595]
12. Strazisar M, Cammaerts S, van der Ven K, Forero DA, Lenaerts AS, Nordin A, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Molecular psychiatry. 2015; 20(4): 472-81. [DOI:10.1038/mp.2014.53]
13. Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Translational psychiatry. 2014; 4(9): e452-e452. [DOI:10.1038/tp.2014.99]
14. Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiology of disease 2012; 46(2): 263-271. [DOI:10.1016/j.nbd.2011.12.029]
15. Yang JS, Maurin T, Lai EC. Functional parameters of Dicer-independent microRNA biogenesis. Rna. 2012; 18(5): 945-57. [DOI:10.1261/rna.032938.112]
16. Jorge AL, Pereira ER, Oliveira CS de, Ferreira E dos S, Menon ETN, Diniz SN, et al. MicroRNAs: understanding their role in gene expression and cancer. Einstein (São Paulo) [Internet]. 2021 Jul 16 [cited 2022 Feb 24]; 19. [DOI:10.31744/einstein_journal/2021RB5996]
17. Migdalska-Richards A, Mill J. Epigenetic studies of schizophrenia: current status and future directions. Current opinion in behavioral sciences. 2019; 25: 102-10. [DOI:10.1016/j.cobeha.2018.12.003]
18. McCutcheon RA, Marques TR, Howes OD. Schizophrenia-an overview. JAMA psychiatry. 2020; 77(2): 201-10. [DOI:10.1001/jamapsychiatry.2019.3360]
19. hajizadeh moghaddam A, barari R, khanjani jelodar S, hasantabar V. Neuroprotective Effects of Silymarin-Loaded Chitosan Nanoparticles on Ketamine-Induced Cognitive Disorders and Oxidative Damages in Mice Hippocampus. Shefaye Khatam. 2022; 10(2) : 1-9.
20. Pries LK, Gülöksüz S, Kenis G. DNA methylation in schizophrenia. Neuroepigenomics in Aging and Disease. 2017; 211-36. [DOI:10.1007/978-3-319-53889-1_12]
21. Crisanti C, Enrico P, Fiorentini A, Delvecchio G, Brambilla P. Neurocognitive impact of ketamine treatment in major depressive disorder: a review on human and animal studies. Journal of Affective Disorders. 2020; 276: 1109-18. [DOI:10.1016/j.jad.2020.07.119]
22. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological research. 2017; 39(1): 73-82. [DOI:10.1080/01616412.2016.1251711]
23. Xie R, Xie J, Ye Y, Wang X, Chen F, Yang L, et al. mTOR Expression in Hippocampus and Prefrontal Cortex Is Downregulated in a Rat Model of Schizophrenia Induced by Chronic Administration of Ketamine. Journal of Molecular Neuroscience. 2020; 70(2): 269-75. [DOI:10.1007/s12031-019-01476-9]
24. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005; 308(5723): 833-8. [DOI:10.1126/science.1109020]
25. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience. 2008; 28(17): 4322-30. [DOI:10.1523/JNEUROSCI.4815-07.2008]
26. Cao T, Zhen XC. Dysregulation of mi RNA and its potential therapeutic application in schizophrenia. CNS neuroscience & therapeutics. 2018; 24(7): 586-97. [DOI:10.1111/cns.12840]
27. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007; 317(5842): 1220-4. [DOI:10.1126/science.1140481]
28. Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. The Journal of experimental medicine. 2007; 204(7): 1553-8. [DOI:10.1084/jem.20070823]
29. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain, behavior, and immunity. 2015; 49: 75-85. [DOI:10.1016/j.bbi.2015.04.014]
30. Ghafouri-Fard S, Eghtedarian R, Taheri M, Beatrix Brühl A, Sadeghi-Bahmani D, Brand S. A review on the expression pattern of non-coding RNAs in patients with schizophrenia: With a special focus on peripheral blood as a source of expression analysis. Frontiers in Psychiatry. 2021; 12: 640463. [DOI:10.3389/fpsyt.2021.640463]
31. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome biology. 2007; 8(2): 1-11. [DOI:10.1186/gb-2007-8-2-r27]
32. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature neuroscience. 2014; 17(2): 215-22. [DOI:10.1038/nn.3607]
33. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human molecular genetics. 2008; 17(8): 1156-68. [DOI:10.1093/hmg/ddn005]
34. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Molecular psychiatry. 2012; 17(8): 827-40 [DOI:10.1038/mp.2011.78]
35. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PloS one. 2011; 6(6): e21635. [DOI:10.1371/journal.pone.0021635]
36. Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, et al. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Translational psychiatry. 2016; 6(1): e717-e717. [DOI:10.1038/tp.2015.213]
37. Wei H, Yuan Y, Liu S, Wang C, Yang F, Lu Z, et al. Detection of circulating miRNA levels in schizophrenia. American Journal of Psychiatry. 2015; 172(11): 1141-7. [DOI:10.1176/appi.ajp.2015.14030273]
38. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature genetics. 2008; 40(6): 751-60. [DOI:10.1038/ng.138]
39. Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS. Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. Journal of Neuroscience. 2012; 32(41): 14132-44. [DOI:10.1523/JNEUROSCI.1312-12.2012]
40. Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11. 2 deletion syndrome. PloS one. 2014; 9(8): e103884. [DOI:10.1371/journal.pone.0103884]
41. Im HI, Kenny PJ. MicroRNAs in neuronal function and dysfunction. Trends in neurosciences. 2012; 35(5): 325-34. [DOI:10.1016/j.tins.2012.01.004]
42. Xu B, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nature genetics. 2008; 40(7): 880-5. [DOI:10.1038/ng.162]
43. Zhou Y, Wang J, Lu X, Song X, Ye Y, Zhou J, et al. Evaluation of six SNPs of MicroRNA machinery genes and risk of schizophrenia. Journal of Molecular Neuroscience. 2013; 49(3): 594-9. [DOI:10.1007/s12031-012-9887-1]
44. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular psychiatry. 2010; 15(12): 1176-89. [DOI:10.1038/mp.2009.84]
45. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ. Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biological psychiatry. 2011; 69(2): 180-7. [DOI:10.1016/j.biopsych.2010.09.030]
46. Beveridge NJ, Santarelli DM, Wang X, Tooney PA, Webster MJ, Weickert CS, et al. Maturation of the human dorsolateral prefrontal cortex coincides with a dynamic shift in microRNA expression. Schizophrenia bulletin. 2014; 40(2): 399-409. [DOI:10.1093/schbul/sbs198]
47. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, et al. MicroRNA loss enhances learning and memory in mice. Journal of Neuroscience. 2010; 30(44): 14835-42. [DOI:10.1523/JNEUROSCI.3030-10.2010]
48. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences. 2009; 106(23): 9362-7. [DOI:10.1073/pnas.0903103106]
49. John J, Bhatia T, Kukshal P, Chandna P, Nimgaonkar VL, Deshpande SN, et al. Association study of MiRSNPs with schizophrenia, tardive dyskinesia and cognition. Schizophrenia research. 2016; 174(1-3): 29-34. [DOI:10.1016/j.schres.2016.03.031]
50. de Bartolomeis A, Iasevoli F, Tomasetti C, Buonaguro EF. MicroRNAs in schizophrenia: implications for synaptic plasticity and dopamine-glutamate interaction at the postsynaptic density. New avenues for antipsychotic treatment under a theranostic perspective. Molecular neurobiology. 2015; 52(3): 1771-90. [DOI:10.1007/s12035-014-8962-8]
51. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012; 37(1): 4-15. [DOI:10.1038/npp.2011.181]
52. Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, et al. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proceedings of the National Academy of Sciences. 2009;106(9):3507-12. [DOI:10.1073/pnas.0805854106]
53. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological reviews. 2012;64(2):238-58. [DOI:10.1124/pr.111.005108]
54. Mitchelmore C, Gede L. Brain derived neurotrophic factor: epigenetic regulation in psychiatric disorders. Brain research. 2014; 1586: 162-72. [DOI:10.1016/j.brainres.2014.06.037]
55. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S. A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human molecular genetics. 2008;17(19):3030-42. [DOI:10.1093/hmg/ddn201]
56. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S. Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biological psychiatry. 2009;65(12):1006-14. [DOI:10.1016/j.biopsych.2008.11.019]
57. Ceaser A, Csernansky JG, Barch DM. COMT influences on prefrontal and striatal blood oxygenation level-dependent responses during working memory among individuals with schizophrenia, their siblings, and healthy controls. Cognitive neuropsychiatry. 2013;18(4):257-83. [DOI:10.1080/13546805.2012.698100]
58. Paschou M, Paraskevopoulou MD, Vlachos IS, Koukouraki P, Hatzigeorgiou AG, Doxakis E. miRNA regulons associated with synaptic function. 2012; [DOI:10.1371/journal.pone.0046189]
59. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. Journal of psychopharmacology. 2015;29(2):97-115. [DOI:10.1177/0269881114563634]
60. Reynolds LM, Pokinko M, Torres-Berrío A, Cuesta S, Lambert LC, Pellitero EDC, et al. DCC receptors drive prefrontal cortex maturation by determining dopamine axon targeting in adolescence. Biological psychiatry. 2018;83(2):181-92. [DOI:10.1016/j.biopsych.2017.06.009]
61. Chun S, Du F, Westmoreland JJ, Han SB, Wang YD, Eddins D, et al. Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11. 2 microdeletion. Nature medicine. 2017;23(1):39-48. [DOI:10.1038/nm.4240]
62. Eom TY, Han SB, Kim J, Blundon JA, Wang YD, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nature communications. 2020;11(1):1-17. [DOI:10.1038/s41467-020-14628-y]
63. Jia X, Wang F, Han Y, Geng X, Li M, Shi Y, et al. miR-137 and miR-491 negatively regulate dopamine transporter expression and function in neural cells. Neuroscience bulletin. 2016;32(6):512-22. [DOI:10.1007/s12264-016-0061-6]
64. Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiology of disease. 2019; 131: 104208. [DOI:10.1016/j.nbd.2018.06.020]
65. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biological psychiatry. 2013;74(6):400-9. [DOI:10.1016/j.biopsych.2013.03.018]
66. Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. Journal of Psychopharmacology. 2019;33(10):1199-214. [DOI:10.1177/0269881119845820]
67. Swahari V, Nakamura A, Hollville E, Stroud H, Simon JM, Ptacek TS, et al. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell reports. 2021;35(1):108946. [DOI:10.1016/j.celrep.2021.108946]
68. Tenorio J, Alarcón P, Arias P, Dapía I, García-Miñaur S, Palomares Bralo M, et al. Further delineation of neuropsychiatric findings in Tatton-Brown-Rahman syndrome due to disease-causing variants in DNMT3A: seven new patients. European Journal of Human Genetics. 2020;28(4):469-79. [DOI:10.1038/s41431-019-0485-3]
69. Sun X yang, Lu J, Zhang L, Song H tao, Zhao L, Fan H min, et al. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. Journal of clinical neuroscience. 2015;22(3):570-4. [DOI:10.1016/j.jocn.2014.08.018]
70. Sun X yang, Zhang J, Niu W, Guo W, Song H tao, Li H yu, et al. A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. American journal of medical genetics part B: Neuropsychiatric genetics. 2015;168(3):170-8. [DOI:10.1002/ajmg.b.32292]
71. Liu S, Zhang F, Shugart YY, Yang L, Li X, Liu Z, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Translational Psychiatry. 2017;7(1): e998-e998. [DOI:10.1038/tp.2016.268]
72. Wang Y, Wang J, Guo T, Peng Y, Wang K, Bai K, Huang Y. Screening of schizophrenia associated miRNAs and the regulation of miR-320a-3p on integrin β1. Medicine. 2019;98(8). [DOI:10.1097/MD.0000000000014332]
73. Liu S, Zhang F, Shugart YY, Yang L, Li X, Liu Z, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7(1): e998. [DOI:10.1038/tp.2016.268]
74. Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, et al. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry. 2016; 6: e717. [DOI:10.1038/tp.2015.213]
75. Yu HC, Wu J, Zhang HX, Zhang GL, Sui J, Tong WW, et al. Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Progress in Neuro-Psychopharmacology and biological psychiatry. 2015; 63: 23-9. [DOI:10.1016/j.pnpbp.2015.05.007]
76. Wei H, Yuan Y, Liu S, Wang C, Yang F, Lu Z, et al. Detection of circulating miRNA levels in schizophrenia. American Journal of Psychiatry. 2015;172(11):1141-7. [DOI:10.1176/appi.ajp.2015.14030273]
77. Sun XY, Zhang J, Niu W, Guo W, Song HT, Li HY, et al. A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. American journal of medical genetics part B: Neuropsychiatric genetics. 2015;168(3):170-8. [DOI:10.1002/ajmg.b.32292]
78. Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PloS one. 2013;8(1):e48814. [DOI:10.1371/journal.pone.0048814]
79. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome biology. 2007;8(2):1-1 [DOI:10.1186/gb-2007-8-2-r27]
80. Parvini N, Ahmadi S. Role of MicroRNAs in Development of Immune Cells and Nervous System and their Relation to Multiple Sclerosis. Shefaye Khatam. 2015; 3 (1) :131-144 [DOI:10.18869/acadpub.shefa.3.1.131]
81. Talebi F, Ghorbani Gazar S. Role of microRNAs in Central Nervous System Development. Shefaye Khatam. 2013; 1 (3) :17-22. [DOI:10.18869/acadpub.shefa.1.3.17]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemzadeh Z, khanjani-Jelodar S, Nazari-Serenjeh F, Lotfi Ghadikolaii N. The Role of microRNA in the Pathogenesis of Schizophrenia. Shefaye Khatam 2022; 11 (1) :119-132
URL: http://shefayekhatam.ir/article-1-2320-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (Winter 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660