:: دوره 11، شماره 4 - ( پاییز 1402 ) ::
دوره 11 شماره 4 صفحات 41-32 برگشت به فهرست نسخه ها
آیا سطح قند خون و سن در بروز اختلال عملکردی اعصاب جمجمه اول، هفتم و نهم در بیماران مبتلا به کووید-19 نقش دارند؟
سجاد سالاری ، مریم باقری*
گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ایلام، ایلام، ایران ، maryam.bagheri@medilam.ac.irilam.ac.ir
چکیده:   (477 مشاهده)
مقدمه: بیماری کرونا ویروس 2019 (کووید-19) می‌تواند برسیستم اعصاب محیطی و مرکزی نیز تاثیر بگذارد. سردرد، بیماری عروق مغزی، آنوسمی، اختلال چشایی و بینایی و درد نوروپاتیک در بیماران مبتلا به کووید-19 مشاهده شده است. در تحقیق حاضر، تاثیر عوامل مستعد کننده مانند میزان قند خون و سن بر بروز تغییرات عملکرد برخی از اعصاب کرانیال بررسی شده است. مواد و روش‌ها: در این مطالعه 1138 نفر مرد و زن مبتلا به کووید 19 (89-18 سال) بستری در بیمارستان شهید مصطفی شهر ایلام، بدون سابقه ابتلا به دیابت مورد مطالعه قرار گرفتند. میزان قند خون ناشتا، اختلال حس چشایی، اختلال حس بویایی، گلو درد و فاکتورهای مختلف خونی دراین افراد مورد مطالعه قرار گرفت. یافته‌ها: میزان بروز اختلال عملکرد عصب زوج اول، بخش حسی عصب زوج هفتم و زوج نهم مغزی در افراد غیر‌دیابتی مبتلا به کووید با سطح قند خون رابطه معکوس نشان داده است. همچنین، میزان بروز اختلال بویایی و چشایی در مبتلایان به کووید-19 بدون سابقه دیابت با افزایش سن رابطه معکوس نشان داد. نتیجه‌گیری: ویروس کرونا می‌تواند باعث اختلال عملکرد جزئی یا کامل در فعالیت برخی از اعصاب مغزی شود. بروز اختلال در حس بویایی و چشایی در مبتلایان به کووید-19، با افزایش سطح قند خون ناشتا و نیز با افزایش سن کاهش می‌یابد.
 
واژه‌های کلیدی: کووید، بیماری‌های سیستم عصبی، اختلالات چشایی، اختلالات بویای
متن کامل [PDF 1097 kb]   (210 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: نوروفيزيولوژي
فهرست منابع
1. Ochani R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021; 29(1): 20-36.
2. Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy. 2021; 76(2): 428-55. [DOI:10.1111/all.14657]
3. Organization WH. Naming the coronavirus disease (COVID-19) and the virus that causes it. Brazilian Journal Of Implantology And Health Sciences. 2020; 2(3).
4. Pleasure SJ, Green AJ, Josephson SA. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA neurology. 2020; 77(6): 679-80. [DOI:10.1001/jamaneurol.2020.1065]
5. Bridwell R, Long B, Gottlieb M. Neurologic complications of COVID-19. The American journal of emergency medicine. 2020;38(7): 1549. e3-e7. [DOI:10.1016/j.ajem.2020.05.024]
6. Liu K, Pan M, Xiao Z, Xu X. Neurological manifestations of the coronavirus (SARS-CoV-2) pandemic 2019-2020. Journal of Neurology, Neurosurgery & Psychiatry. 2020; 91(6): 669-70. [DOI:10.1136/jnnp-2020-323177]
7. Ogier M, Andéol G, Sagui E, Dal Bo G. How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up. Brain, behavior, & immunity-health. 2020; 5: 100081. [DOI:10.1016/j.bbih.2020.100081]
8. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020; 77(6): 683-90. [DOI:10.1001/jamaneurol.2020.1127]
9. Li Z, Liu T, Yang N, Han D, Mi X, Li Y, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Frontiers of medicine. 2020; 14(5): 533-41. [DOI:10.1007/s11684-020-0786-5]
10. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. bmj. 2020; 368. [DOI:10.1136/bmj.m1091]
11. Phua J, Weng L, Ling L, Egi M, Lim C-M, Divatia JV, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. The lancet respiratory medicine. 2020; 8(5): 506-17. [DOI:10.1016/S2213-2600(20)30161-2]
12. Nath AJN. Neurologic complications of coronavirus infections. AAN Enterprises; 2020; 19(94): 809-810. [DOI:10.1212/WNL.0000000000009455]
13. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain, behavior, and immunity. 2020;87:34-9. [DOI:10.1016/j.bbi.2020.04.027]
14. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet. 2020;395(10224):565-74. [DOI:10.1016/S0140-6736(20)30251-8]
15. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis. 2020;76(1):3-19. [DOI:10.3233/JAD-200581]
16. Lima-Martinez MM, Carrera Boada C, Madera-Silva MD, Marin W, Contreras M. COVID-19 and diabetes: A bidirectional relationship. Clin Investig Arterioscler. 2021;33(3):151-7. [DOI:10.1016/j.artere.2021.04.004]
17. Sullivan BN, Fischer T. Age-Associated Neurological Complications of COVID-19: A Systematic Review and Meta-Analysis. Front Aging Neurosci. 2021;13:653694. [DOI:10.3389/fnagi.2021.653694]
18. Vaira LA, Hopkins C, Salzano G, Petrocelli M, Melis A, Cucurullo M, et al. Olfactory and gustatory function impairment in COVID‐19 patients: Italian objective multicenter‐study. Head & neck. 2020;42(7):1560-9. [DOI:10.1002/hed.26269]
19. Lechien JR, Chiesa-Estomba CM, Hans S, Barillari MR, Jouffe L, Saussez S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Annals of internal medicine. 2020;173(8):672-5. [DOI:10.7326/M20-2428]
20. Melley LE, Bress E, Polan E. Hypogeusia as the initial presenting symptom of COVID-19. BMJ Case Reports CP. 2020;13(5):e236080. [DOI:10.1136/bcr-2020-236080]
21. Liang Y, Xu J, Chu M, Mai J, Lai N, Tang W, et al. Neurosensory dysfunction: a diagnostic marker of early COVID-19. International Journal of Infectious Diseases. 2020;98:347-52. [DOI:10.1016/j.ijid.2020.06.086]
22. Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267-9. [DOI:10.1126/science.abm2052]
23. Zeng J, Xu Y, Shi Y, Jiang C. Inflammation role in sensory neuropathy in Chinese patients with diabetes/prediabetes. Clinical neurology and neurosurgery. 2018;166:136-40. [DOI:10.1016/j.clineuro.2018.01.031]
24. Rasmussen VF, Vestergaard ET, Hejlesen O, Andersson CUN, Cichosz SL. Prevalence of taste and smell impairment in adults with diabetes: A cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES). Primary care diabetes. 2018;12(5):453-9. [DOI:10.1016/j.pcd.2018.05.006]
25. Pugnaloni S, Alia S, Mancini M, Santoro V, Di Paolo A, Rabini RA, et al. A study on the relationship between type 2 diabetes and taste function in patients with good glycemic control. Nutrients. 2020;12(4):1112. [DOI:10.3390/nu12041112]
26. Catamo E, Tornese G, Concas MP, Gasparini P, Robino A. Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2021;31(1):193-200. [DOI:10.1016/j.numecd.2020.08.025]
27. Kim SJ, Windon MJ, Lin SY. The association between diabetes and olfactory impairment in adults: A systematic review and meta-analysis. Laryngoscope investigative otolaryngology. 2019;4(5):465-75. [DOI:10.1002/lio2.291]
28. Zaghloul H, Pallayova M, Al-Nuaimi O, Hovis KR, Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic medicine : a journal of the British Diabetic Association. 2018;35(1):41-52. [DOI:10.1111/dme.13542]
29. Mauri-Obradors E, Estrugo-Devesa A, Jane-Salas E, Vinas M, Lopez-Lopez J. Oral manifestations of Diabetes Mellitus. A systematic review. Med Oral Patol Oral Cir Bucal. 2017;22(5):e586-e94. [DOI:10.4317/medoral.21655]
30. Themistocleous AC, Ramirez JD, Shillo PR, Lees JG, Selvarajah D, Orengo C, et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain. 2016;157(5):1132-45. [DOI:10.1097/j.pain.0000000000000491]
31. Sierra-Silvestre E, Bisset L, Coppieters MW. Altered pain processing in people with type I and II diabetes: a protocol for a systematic review and meta-analysis of pain threshold and pain modulation mechanisms. Systematic reviews. 2018;7(1):222. [DOI:10.1186/s13643-018-0895-2]
32. Enríquez-Pérez IA, Galindo-Ordoñez KE, Pantoja-Ortíz CE, Martínez-Martínez A, Acosta-González RI, Muñoz-Islas E, et al. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck. Neuroscience letters. 2017; 655: 28-34. [DOI:10.1016/j.neulet.2017.06.042]
33. Yazla S, Özmen S, Kıyıcı S, Yıldız D, Haksever M, Gencay S. Evaluation of olfaction and taste function in type 2 diabetic patients with and without peripheral neuropathy. Diabetes/metabolism research and reviews. 2018; 34(3). [DOI:10.1002/dmrr.2973]
34. Miri C, Charii H, Bouazzaoui MA, Laouan Brem F, Boulouiz S, Abda N, et al. D-dimer Level and Diabetes in the COVID-19 Infection. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2021; 27: 10760296211045902. [DOI:10.1177/10760296211045902]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 4 - ( پاییز 1402 ) برگشت به فهرست نسخه ها