1. Walia P, Ghosh A, Singh S, Dutta A. Portable Neuroimaging-Guided Noninvasive Brain Stimulation of the Cortico-Cerebello-Thalamo-Cortical Loop-Hypothesis and Theory in Cannabis Use Disorder. Brain Sciences. 2022; 12(4): 10.3390/brainsci12040445 [ DOI:10.3390/brainsci12040445] 2. Atadokht A, mohamadnezhad devin a. Evaluation of the Mediating Role of Social Competence in the Relationship between Brain-Behavioral Systems and Readiness for Addiction. The Neuroscience Journal of Shefaye Khatam. 2023; 12(1): 13-21. [ DOI:10.61186/shefa.12.1.13] 3. Ghazvini H, Seyedhoseini Tamijani SM, Rafaiee R. Animal Models of Addiction: A Review. The Neuroscience Journal of Shefaye Khatam. 2022; 10(4): 92-103. [ DOI:10.52547/shefa.10.4.92] 4. Ekhtiari H, Soleimani G, Kuplicki R, Yeh HW, Cha YH, Paulus M. Transcranial direct current stimulation to modulate fMRI drug cue reactivity in methamphetamine users: A randomized clinical trial. Human Brain Mapping. 2022; 43(17): 5340-57. [ DOI:10.1002/hbm.26007] 5. Huang X, Qi Y, Zhang R, Pu Y, Chen X, Chen S, et al. Altered executive control network and default model network topology are linked to acute electronic cigarette use: A resting-state fNIRS study. Addiction Biology. 2024; 29(7): e13423. [ DOI:10.1111/adb.13423] 6. Gilman JM, Yücel MA, Pachas GN, Potter K, Levar N, Broos H, et al. Delta-9-tetrahydrocannabinol intoxication is associated with increased prefrontal activation as assessed with functional near-infrared spectroscopy: A report of a potential biomarker of intoxication. Neuroimage. 2019; 197: 575-85. [ DOI:10.1016/j.neuroimage.2019.05.012] 7. Rigi Kooteh B, Mahdavi A, Rigi A, Borhani T, Hashemzahi Z, Seyednejad M, Sarani yaztappeh J. The Effectiveness of Transcranial Direct Current Electrical Stimulation on Reducing Craving: a Meta-Analytic Study. The Neuroscience Journal of Shefaye Khatam. 2021; 10(1): 99-110. [ DOI:10.52547/shefa.10.1.99] 8. Carollo A, Cataldo I, Fong S, Corazza O, Esposito G. Unfolding the real-time neural mechanisms in addiction: Functional near-infrared spectroscopy (fNIRS) as a resourceful tool for research and clinical practice. Addiction Neuroscience. 2022; 4: 100048. [ DOI:10.1016/j.addicn.2022.100048] 9. Dempsey JP, Harris KS, Shumway ST, Kimball TG, Herrera JC, Dsauza CM, Bradshaw SD. Functional near infrared spectroscopy as a potential biological assessment of addiction recovery: preliminary findings. American Journal of Drug and Alcohol Abuse. 2015; 41(2): 119-26. [ DOI:10.3109/00952990.2014.983273] 10. Bu L, Qi L, Yan W, Yan Q, Tang Z, Li F, et al. Acute kick-boxing exercise alters effective connectivity in the brain of females with methamphetamine dependencies. Neuroscience Letters. 2020; 720: 134780. [ DOI:10.1016/j.neulet.2020.134780] 11. Gu X, Li X, Yang B. Comparison of brain functions between healthy participants and methamphetamine users with various addiction histories: Data analysis based on EEG and fNIRS. Journal of Innovative Optical Health Sciences. 2024; 17(03): 2350029. [ DOI:10.1142/S1793545823500293] 12. Keles HO, Radoman M, Pachas GN, Evins AE, Gilman JM. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users. Frontiers in Human Neuroscience. 2017; 11: 488. [ DOI:10.3389/fnhum.2017.00488] 13. Sahaf SMS, Heydari Yazdi AS, Ramezani F, Kamrani M. Effectiveness of Transcranial-Direct Current Stimulation in Individuals with Methamphetamine Use Disorder: A Systematic Review and Meta-Analysis. International Journal of High Risk Behaviors and Addiction. 2024; 13(3): e146021. [ DOI:10.5812/ijhrba-146021] 14. Bradshaw SD, Shumway ST, Dsauza CM, Morris N, Hayes ND. Hope, coping skills, and the prefrontal cortex in alcohol use disorder recovery. American Journal of Drug and Alcohol Abuse. 2017; 43(5): 591-601. [ DOI:10.1080/00952990.2017.1286500] 15. Gu X, Yang B, Gao S, Yan LF, Xu D, Wang W. Prefrontal fNIRS-based clinical data analysis of brain functions in individuals abusing different types of drugs. Journal of Biomedical Semantics. 2021; 12(1): 21. [ DOI:10.1186/s13326-021-00256-y] 16. Okada N, Takahashi K, Nishimura Y, Koike S, Ishii-Takahashi A, Sakakibara E, et al. Characterizing prefrontal cortical activity during inhibition task in methamphetamine-associated psychosis versus schizophrenia: a multi-channel near-infrared spectroscopy study. Addiction Biology. 2016; 21(2): 489-503. [ DOI:10.1111/adb.12224] 17. Chen YH, Yang J, Wu H, Beier KT, Sawan M. Challenges and future trends in wearable closed-loop neuromodulation to efficiently treat methamphetamine addiction. Frontiers in Psychiatry. 2023; 14: 1085036. [ DOI:10.3389/fpsyt.2023.1085036] 18. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal. 2021; 372: n71. 19. Qi L, Yin Y, Bu L, Tang Z, Tang L, Dong G. Acute VR competitive cycling exercise enhanced cortical activations and brain functional network efficiency in MA-dependent individuals. Neuroscience Letters. 2021; 757: 135969. [ DOI:10.1016/j.neulet.2021.135969] 20. Qi L, Tian ZH, Yue Y, Guan S, Tang L, Dong G. Effects of acute exercise on craving and cortical hemodynamics under drug-cue exposure in MA-dependent individuals. Neuroscience Letters. 2022; 781: 136672. [ DOI:10.1016/j.neulet.2022.136672] 21. Gao S, Zhou C, Chen Y. Effects of Acute Moderate- and High-Intensity Aerobic Exercise on Oxygenation in Prefrontal Cortex of Male Methamphetamine-Dependent Patients. Frontiers in Psychology. 2022; 13: 801531. [ DOI:10.3389/fpsyg.2022.801531] 22. Kroczek AM, Häußinger FB, Rohe T, Schneider S, Plewnia C, Batra A, et al. Effects of transcranial direct current stimulation on craving, heart-rate variability and prefrontal hemodynamics during smoking cue exposure. Drug and Alcohol Dependence. 2016; 168: 123-7. [ DOI:10.1016/j.drugalcdep.2016.09.006] 23. Ieong HF, Yuan Z. Emotion recognition and its relation to prefrontal function and network in heroin plus nicotine dependence: a pilot study. Neurophotonics. 2018; 5(2): 025011. [ DOI:10.1117/1.NPh.5.2.025011] 24. Huhn AS, Meyer RE, Harris JD, Ayaz H, Deneke E, Stankoski DM, Bunce SC. Evidence of anhedonia and differential reward processing in prefrontal cortex among post-withdrawal patients with prescription opiate dependence. Brain Research Bulletin. 2016; 123: 102-9. [ DOI:10.1016/j.brainresbull.2015.12.004] 25. Wagner AN, Bradshaw SD, Dawson JA, Shumway ST. Examining Prefrontal Cortex Activity and Tonic Anxiety in Alcohol Use Disorder Recovery: A Functional Near Infrared Spectroscopy Study. Alcoholism Treatment Quarterly. 2017; 35(3): 243-59. [ DOI:10.1080/07347324.2017.1322422] 26. Huhn AS, Brooner RK, Sweeney MM, Yip SW, Ayaz H, Dunn KE. Increased neural activity in the right dorsolateral prefrontal cortex during a risky decision-making task is associated with cocaine use in methadone-maintained patients. Drug and Alcohol Dependence. 2019; 205: 107650. [ DOI:10.1016/j.drugalcdep.2019.107650] 27. Ieong HF-h, Gao F, Yuan Z. Machine learning: assessing neurovascular signals in the prefrontal cortex with non-invasive bimodal electro-optical neuroimaging in opiate addiction. Scientific Reports. 2019; 9(1): 18262. [ DOI:10.1038/s41598-019-54316-6] 28. Wang H, Chen Y, Li X, Wang J, Zhou Y, Zhou C. Moderate-Intensity Aerobic Exercise Restores Appetite and Prefrontal Brain Activity to Images of Food Among Persons Dependent on Methamphetamine: A Functional Near-Infrared Spectroscopy Study. Frontiers in Human Neuroscience. 2019; 13: 400. [ DOI:10.3389/fnhum.2019.00400] 29. Ernst LH, Plichta MM, Dresler T, Zesewitz AK, Tupak SV, Haeussinger FB, et al. Prefrontal correlates of approach preferences for alcohol stimuli in alcohol dependence. Addiction Biology. 2014; 19(3): 497-508. [ DOI:10.1111/adb.12005] 30. Petrie DJ, Knapp KS, Freet CS, Deneke E, Brick TR, Cleveland HH, Bunce SC. Prefrontal cortical response to natural rewards and self-reported anhedonia are associated with greater craving among recently withdrawn patients in residential treatment for opioid use disorder. Brain Research Bulletin. 2022; 190: 32-41. [ DOI:10.1016/j.brainresbull.2022.09.012] 31. Kroczek AM, Haeussinger FB, Fallgatter AJ, Batra A, Ehlis AC. Prefrontal functional connectivity measured with near-infrared spectroscopy during smoking cue exposure. Addiction Biology. 2017; 22(2): 513-22. [ DOI:10.1111/adb.12344] 32. Huhn AS, Brooner RK, Sweeney MM, Antoine D, Hammond AS, Ayaz H, Dunn KE. The association of prefrontal cortex response during a natural reward cue-reactivity paradigm, anhedonia, and demoralization in persons maintained on methadone. Addictive Behaviors. 2021; 113: 106673. [ DOI:10.1016/j.addbeh.2020.106673] 33. Montgomery C, Fisk JE, Roberts CA. Updating of working memory in ecstasy polydrug users: Findings from fNIRS. Human Psychopharmacology. 2017; 32(3). [ DOI:10.1002/hup.2609] 34. Dakhili A, Sangchooli A, Jafakesh S, Zare-Bidoky M, Soleimani G, Batouli SAH, et al. Cue-induced craving and negative emotion disrupt response inhibition in methamphetamine use disorder: Behavioral and fMRI results from a mixed Go/No-Go task. Drug and Alcohol Dependence. 2022; 233: 109353. [ DOI:10.1016/j.drugalcdep.2022.109353] 35. Huang Y, Mohan A, De Ridder D, Sunaert S, Vanneste S. The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study. Scientific Reports. 2018; 8(1): 923. [ DOI:10.1038/s41598-017-18471-y] 36. Morawetz C, Berboth S, Chirokoff V, Chanraud S, Misdrahi D, Serre F, et al. Mood Variability, Craving, and Substance Use Disorders: From Intrinsic Brain Network Connectivity to Daily Life Experience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2023; 8(9): 940-55. [ DOI:10.1016/j.bpsc.2022.11.002] 37. Lucero Jones R, Zielinski M, Bradshaw S, Schleiden C, Shumway ST. The Effect of Past Abuse on PFC Recovery from an Alcohol Use Disorder. Alcoholism Treatment Quarterly. 2020; 38(3): 325-45. [ DOI:10.1080/07347324.2019.1711280]
|