[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 6, Issue 4 (Autumn - 2018) ::
Shefaye Khatam 2018, 6(4): 5-13 Back to browse issues page
The Effect of Gallic Acid on Motor Learning and Cerebellar Level of Brain Derived Neurotrophic Factor in a Rat Model of Autism
Mohammad Amin Edalatmanesh * , Parvin Samimi
Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
Abstract:   (8002 Views)
Introduction: Exposure to Valproic acid (VPA) during pregnancy in rats leads to oxidative stress, brain deficits, and autistic-like behaviors in the offspring. On the other hand, Gallic acid (GA) can effectively be used in the treatment of free radicals-induced nervous system disorders. The aim of this study was to investigate the effect of GA on motor learning and cerebellar level of brain derived neurotrophic factor (BDNF) in rats embryonically exposed to VPA. Materials and Methods: Pups of 30 pregnant rats were randomly divided into 5 groups: control, VPA (500 mg/kg Valproic acid) at embryonic day (ED) 12.5 groups as well as three groups of VPA+GA50, VPA+GA100, and VPA+ GA200 (receiving 50, 100 and 200 mg/kg GA, respectively). GA was orally administered from 12 to 19 ED. Then, to assess the motor disorders beam walking and rotarod tests were carried out at postnatal day 30. Finally, the cerebellar level of BDNF was measured using ELISA. Results: Impairments were observed in the motor function test of the VPA group compared to the control rats. In contrast, GA-treated groups have a significant improvement in speed on beam and balance in beam walking test as well as an increase time spent in rotarodas well. A significant increase of BDNF was seen in GA-treated rats compared to VPA group. Conclusion: GA can alleviate the adverse effects of VPA on motor learning and balance in a rat model of autism.
Keywords: Gallic Acid, Valproic Acid, Motor Disorders, Autistic Disorder, Rats
Full-Text [PDF 631 kb]   (2389 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Shinoda Y, Sadakata T, Furuichi T. Animal models of autism spectrum disorder (ASD): a synaptic-level approach to autistic-like behavior in mice.Exp Anim.2013; 62(2):71-8. [DOI:10.1538/expanim.62.71]
2. Hastings PR, Brown T. Behavior problems of children with autism, parental self-efficacy, andmental health.Am J Ment Retard.2002;107(3): 222-32. https://doi.org/10.1352/0895-8017(2002)107<0222:BPOCWA>2.0.CO;2 [DOI:10.1352/0895-8017(2002)1072.0.CO;2]
3. Deweerdt S. Mounting evidence implicates cerebellum in autism.SFARI. 2014; 8:1-6.
4. SkefosJ, Christopher C, Katelyn E, Holiday J, Weed K, Levy E, et al. Regional alterations in purkinje cell density in patients with autism. PLoS One. 2014;10:1371. doi.org/10.1371/journal.pone.0081255. [DOI:10.1371/journal.pone.0081255]
5. BerglandCh.How are purkinje cells in the cerebellum linked to autism? The Athlete's Way. 2014;519:14-51.
6. Miki T, Lee KY, Yokoyama T, Liu JQ, Kusaka T, Suzuki S, et al.Differential effects of neonatal maternal separation on the expression of neurotrophic factors in rat brain. II: regional differences in the cerebellum versus the cerebral cortex.Okajimas Folia AnatJpn. 2013;90(3):53-8. [DOI:10.2535/ofaj.90.]
7. Choo M, Miyazaki T, Yamazaki M, Kawamura M, NakazawaT, Zhang J, et al.Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum.NatCommun. 2017;8(1):195. doi: 10.1038/s41467-017-00260-w. [DOI:10.1038/s41467-017-00260-w]
8. Kim J, Lee S, Kang S, Kim SH, Kim JC, Yang M, et al.Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neurodegeneration.Neural Regen Res. 2017;12(10): 1733-41. [DOI:10.4103/1673-5374.217353]
9. Bath KG, Pimentel T. Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice.Epilepsy Behav. 2017;70(Pt A): 110-7.
10. Rahmani F, Rezaei N. brain-derived neurotrophic factor role in autism remains elusive: a flashback on the route that has brought us here.Acta Med Iran. 2017;55(12): 733-5.
11. Iwata K, Matsuzaki H, Takei N, ManabeT,Mori N. Animal models of autism: an epigenetic and environmental viewpoint. J Cent NervSyst Dis. 2010; 2: 37-44. [DOI:10.4137/JCNSD.S6188]
12. Rinaldi T, Kulangara K, Antoniello K, Markram H. Elvated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. ProcNatlAcadSci USA.2007; 104(33): 13501-6. [DOI:10.1073/pnas.0704391104]
13. Kang J, Kim E.Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front MolNeurosci. 2015;8:17. doi: 10.3389/fnmol.2015.00017. [DOI:10.3389/fnmol.2015.00017]
14. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism.Exp Neurol. 2018;299(Pt A): 217-27.
15. Khongrum J, Wattanathorn J. Laser acupuncture at HT7 improves the cerebellar disorders in valproic acid-rat model of autism.J Acupunct Meridian Stud. 2017;10(4): 231-9. [DOI:10.1016/j.jams.2017.06.006]
16. Rahimian S, Amin Yazdi A, Edalatmanesh MA. Environmental enrichment: a new therapy based on findings in animal models of autism. ShefayeKhatam. 2016; 4 (4) :89-98. [DOI:10.18869/acadpub.shefa.4.4.89]
17. Yui K, Kawasaki Y, Yamada H, Ogawa S. Oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders.CNS NeurolDisord Drug Targets. 2016;15(5):587-96. [DOI:10.2174/1871527315666160413121751]
18. Alasalvar C, Bolling BW. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects.Br J Nutr. 2015;113(2):S68-78. [DOI:10.1017/S0007114514003729]
19. Choubey S, Varughese LR, Kumar V, Beniwal V. Medicinal importance of gallic acid and its ester derivatives: a patent review.Pharm Pat Anal. 2015; 4(4):305-15. [DOI:10.4155/ppa.15.14]
20. Sarjit A, Wang Y, Dykes GA. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.Food Microbiol. 2015; 46:227-33. [DOI:10.1016/j.fm.2014.08.002]
21. Hsieh SC, Wu CC, Hsu SL, Yen JH. Molecular mechanisms of gallic acid-induced growth inhibition, apoptosis, and necrosis in hypertrophic scar fibroblasts.Life Sci. 179: 130-8. [DOI:10.1016/j.lfs.2016.08.006]
22. Rafiei S, Bazyar Y, Edalatmanesh MA. Effect of gallic acid and endurance exercise training on bdnf in a model of hippocampal degeneration. ShefayeKhatam. 2016; 4(1) :1-6. [DOI:10.18869/acadpub.shefa.4.1.1]
23. Garud MS, Kulkarni YA. Gallic acid attenuates type I diabetic nephropathy in rats.ChemBiol Interact. 2018;282:69-76. [DOI:10.1016/j.cbi.2018.01.010]
24. Sadoghi SD, Rahbariyan R. Investigation the effect of glycyrrhizic acid on ovarian follicle in polycystic ovarian syndrome mice model. SJIMU. 2017; 24(6):138-48. [DOI:10.18869/acadpub.sjimu.24.6.138]
25. Edalatmanesh MA, Nikfarjam H, Moghadas M, Haddad-Mashadrizeh A, Robati R, Hashemzadeh MR. Histopathological and behavioral assessment of toxin-produced cerebellar lesion: a potent model for cell transplantation studies in the cerebellum. Cell J. 2014; 16(3): 325-34.
26. Sadoughi D, Khayatzadeh J. Effect of curcumin on hippocampal levels of brain-derived neurotrophic factor and serum levels of inflammatory cytokines in rat model for Alzheimer's disease. Shefaye Khatam. 2018; 6(1) :1-9. [DOI:10.29252/shefa.6.1.1]
27. Christensen J, Gronborg TK, Sorensen MJ, Schendel D, Parner ET, Pedersen LH. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013; 309(16): 1696-703. [DOI:10.1001/jama.2013.2270]
28. Edalatmanesh MA, Nikfarjam H, Vafaee F, Moghadas M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism.Brain Res. 2013;1526:15-25. [DOI:10.1016/j.brainres.2013.06.024]
29. Borzou Z, Edalatmanesh MA. The evaluation of brain derived neurotrophic factor and working memory in valproic acid animal model of autism. ShefayeKhatam. 2015; 3(4): 10-6. [DOI:10.18869/acadpub.shefa.3.4.10]
30. Starowicz-Filip A, Chrobak AA, Moskała M, Krzyżewski RM, Kwinta B, Kwiatkowski S, et al. The role of the cerebellum in the regulation of language functions.Psychiatr Pol. 2017;51(4): 661-71. [DOI:10.12740/PP/68547]
31. Teitelbaum P, Teitelbaum O, Fryman J, Maurer R. Infantile reflexes gone astray in autism. J Dev Learn Disord. 2000; 6:15-22.
32. Mansouri MT, Farbood Y, Sameri JM, Sarkaki A, Naghizadeh B, Rafieirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chemistry. 2012; 138(2–3): 1028-33.
33. Nykjaer A, Willnow TE, Petersen CM. p75NTR--live or let die. CurrOpinNeurobiol. 2005; 15(1):49-57. [DOI:10.1016/j.conb.2005.01.004]
34. Kishi T, Yoshimura R, Ikuta T, Iwata N. Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses.Front Psychiatry. 2018;8:308. doi: 10.3389/fpsyt.2017.00308. [DOI:10.3389/fpsyt.2017.00308]
35. Vazquez-Sanroman D, Sanchis-Segura C, Toledo R, Hernandez ME, Manzo J, Miquel M.The effects of enriched environment on BDNF expression in the mouse cerebellum depending on the length of exposure.Behav Brain Res. 2013;243:118-28. [DOI:10.1016/j.bbr.2012.12.047]
36. Soori M, Edalatmanesh MA. Survey of serum levels of brain-derived neurotrophic factor in autistic rats. J Clin Res Paramed Sci. 2014; 3(4): 264-70.
37. Meng WD, Sun SJ, Yang J, Chu RX, Tu W, Liu Q. Elevated serum brain-derived neurotrophic factor (bdnf) but not bdnf gene val66met polymorphism is associated with autism spectrum disorders.MolNeurobiol. 2017;54(2): 1167-72. [DOI:10.1007/s12035-016-9721-9]
38. Corona G, Vauzour D, Hercelin J, Williams CM, Spencer JP. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation.Antioxid Redox Signal. 2013;19(14):1676-89. [DOI:10.1089/ars.2012.5142]
39. Doroodi L, Edalatmanesh MA. The histopathological evaluation of gallic acid on rat purkinje cells after trimethyltin intoxication. ShefayeKhatam. 2017; 5(2):11-8. [DOI:10.18869/acadpub.shefa.5.2.11]
40. Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat!Curr Pharm Biotechnol. 2014;15(4):362-72. [DOI:10.2174/138920101504140825120737]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Edalatmanesh M A, Samimi P. The Effect of Gallic Acid on Motor Learning and Cerebellar Level of Brain Derived Neurotrophic Factor in a Rat Model of Autism. Shefaye Khatam 2018; 6 (4) :5-13
URL: http://shefayekhatam.ir/article-1-1761-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 4 (Autumn - 2018) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.12 seconds with 47 queries by YEKTAWEB 4660