[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 8, Issue 4 (Autumn 2020) ::
Shefaye Khatam 2020, 8(4): 90-102 Back to browse issues page
The Key Role of Macrophages and Monocytes in Spinal Cord Injury: Development of Novel Therapeutic Approaches
Moosa Javdani * , Abolfazl Barzegar-Bafrouei
Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran , Javdani59@gmail.com
Abstract:   (4337 Views)
Introduction: Spinal cord injury (SCI) causes inflammation by activating innate immune responses. The process of secondary spinal cord injury involves oligodendrocyte apoptosis, myelin sheath degradation, axonal degeneration, and nerve cell death. The inflammatory microenvironment created by SCI affects nerve repair and recovery. In SCI, macrophage activation, accumulation, and persistent inflammation occur. Macrophages are heterogeneous cells with variable and extensive functions that some of their phenotypes play an important role in decreasing post-nerve injury recovery. After neurodegeneration, resident and peripheral immune cell-derived microglia participate in the inflammatory process and upregulate inflammatory cytokines. Other important issues include the role of monocytes as a source of macrophages in the process of spinal cord injury. Understanding the aspect and function of these cells can be helpful to design novel therapeutic strategies. Conclusion: Rapid infiltration of leukocytes into the injured spinal cord is involved in the pathogenesis of secondary spinal cord injury. Therapeutic approaches to inhibit leukocyte infiltration into the injured site enhance the recovery of nerve and white matter injuries after SCI. The first cells to invade the spinal cord are monocytes and neutrophils. Monocytes are the source of cytokines, inflammatory chemokines, and oxidative stress that infiltrate the injured site within the first 24 hours after SCI and reach their peak within 4 to 7 days after injury. This article reviews the different roles of macrophages and monocytes and their potential impacts in adopting novel therapeutic approaches in patients with SCI.
Keywords: Spinal Cord Injuries, Macrophages, Monocytes
Full-Text [PDF 511 kb]   (2208 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Javdani M, Habibi A, Shirian S, Kojouri GA, Hosseini F. Effect of Selenium Nanoparticle Supplementation on Tissue Inflammation, Blood Cell Count, and IGF-1 Levels in Spinal Cord Injury-Induced Rats. Biol Trace Elem Res. 2018; 10(100): 1-10. [DOI:10.1007/s12011-018-1371-5]
2. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, et al. The cellular inflammatory response in human spinal cords afer injury. Brain. 2006; 129(12): 3249-69. [DOI:10.1093/brain/awl296]
3. Barzegar Bafruoei A, Javdani M. Interplays between Nociceptors and Immune Cells; Mast Cells. Shefaye Khatam. 2019; 7: 102. [DOI:10.29252/shefa.7.3.102]
4. Kaboutari Katadj J, Zendehdel M, Javdani M. The antinociceptive effect of Artemisinin on the inflammatory pain and role of GABAergic& opioidergic systems. Korean J Pain. 2016; 32: 160-7. [DOI:10.3344/kjp.2019.32.3.160]
5. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011; 11(11): 723-37. [DOI:10.1038/nri3073]
6. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009; 27: 451-83. [DOI:10.1146/annurev.immunol.021908.132532]
7. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004; 25(12): 677-86. [DOI:10.1016/j.it.2004.09.015]
8. Ghorbani R, Javdani M, Safdari F. Spinal cord neuropathic pain and key role TLR-4. Shefaye Khatam. 2019; 7: 116-7.
9. Gordon S, Taylor PR. Monocyte and macrophage hreterogeneity. Nat Rev Immunol. 2005; 5(12): 953-64. [DOI:10.1038/nri1733]
10. Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A, et al. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA. 2010; 107(50): 21659-64. [DOI:10.1073/pnas.1007654108]
11. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 2013; 38: 555-69. [DOI:10.1016/j.immuni.2013.02.012]
12. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009; 29(43): 13435-44. [DOI:10.1523/JNEUROSCI.3257-09.2009]
13. Dalli J, Serhan CN. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood. 2012: 120: e60-e72. [DOI:10.1182/blood-2012-04-423525]
14. Liu NKL, Xu XM. Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol. 2010; 41(2-3): 197-205. [DOI:10.1007/s12035-010-8101-0]
15. Buczynski MW, Svensson CI, Dumlao DS, Fitzsimmons BL, Shim JH, Scherbart TJ, et al. Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. J Neurochem. 2010; 114(4): 981-93. [DOI:10.1111/j.1471-4159.2010.06815.x]
16. Noguchi K, Okubo M. Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull. 2011; 34(8): 1163-9. [DOI:10.1248/bpb.34.1163]
17. Dulin JN, Karoly ED. Wang Y, Strobel HW, Grill RJ. Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. J Neurosci. 2013: 33(2): 652-64. [DOI:10.1523/JNEUROSCI.6128-11.2013]
18. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008; 8(12): 958-69. [DOI:10.1038/nri2448]
19. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Rev Immunol. 2012; 13: 1118-28. [DOI:10.1038/ni.2419]
20. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstoneet SR, al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010; 107(6): 737-46. [DOI:10.1161/CIRCRESAHA.109.215715]
21. Bogie JFJ, Stinissen P, Hellings N, Hendriks JJA. Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflamm. 2011; 8. [DOI:10.1186/1742-2094-8-85]
22. Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J. Immunol. 2010: 184(9): 4810-18. [DOI:10.4049/jimmunol.0901368]
23. Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, Ley K. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ. Res. 2010; 106(1): 203-11. [DOI:10.1161/CIRCRESAHA.109.199505]
24. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012; 122(3): 787-95. [DOI:10.1172/JCI59643]
25. Gensel JC, Donnelly DJ, Popovich PG. Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Tar. 2011; 15(4): 505-18. [DOI:10.1517/14728222.2011.553605]
26. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol. 2011; 41(8): 2155-64. [DOI:10.1002/eji.201141817]
27. Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1990; 10(5): 680-7. [DOI:10.1161/01.ATV.10.5.680]
28. Yang N, Isbel NM, Nikolic-Paterson DJ, Li Y, Ye R, Atkins RC, et al. Local macrophage proliferation in human glomerulonephritis. Kidney Int. 1998; 54(1): 143-51. [DOI:10.1046/j.1523-1755.1998.00978.x]
29. Xaus J, Comalada M, Valledor AF, Cardó M, Herrero C, Soleret C, et al. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology. 2001; 204(5): 543-50. [DOI:10.1078/0171-2985-00091]
30. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006; 18(1): 39-48. [DOI:10.1016/j.coi.2005.11.006]
31. Hume DA, MacDonald KPA. Terapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012; 119(8): 1810-20. [DOI:10.1182/blood-2011-09-379214]
32. O'Farrell AM, Liu Y, Moore KW, Mui ALF. IL- 10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and - independent pathways. EMBO J. 1998; 17(4): 1006-18. [DOI:10.1093/emboj/17.4.1006]
33. O'Farrell AM, Parry DA, Zindy F, Roussel MF, Lees E, Moore KW, et al. Stat3-dependent induction of p19(INK4D) by IL-10 contributes to inhibition of macrophage proliferation. J Immunol. 2000; 164(9): 4607-15. [DOI:10.4049/jimmunol.164.9.4607]
34. Arpa L, Valledor AF, Lloberas J, Celada A. IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21waf1 in a STAT6-dependent way.Eur. J Immunol. 2009; 39(2): 514-26. [DOI:10.1002/eji.200838283]
35. Pascual-Garcia M, Carbo JM, León T, Matalonga J, Out R, Berkelet TV, et al. Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4. J Immunol. 2011; 186(8): 4656-67. [DOI:10.4049/jimmunol.1000585]
36. Hong C, Tontonoz P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev. 2008; 18(5): 461-7. [DOI:10.1016/j.gde.2008.07.016]
37. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496: 445-55. [DOI:10.1038/nature12034]
38. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful benefcial effects of macrophage colonystimulating factor on β-amyloid deposition and cognitive impairment in Alzheimers disease. Brain. 2009; 132(4): 1078-92. [DOI:10.1093/brain/awn331]
39. Yagihashi A, Sekiya T, Suzuki S. Macrophage colony stimulating factor (M-CSF) protects spiral ganglion neurons following auditory nerve injury: morphological and functional evidence. Exp Neurol. 2005; 192(1): 167-77. [DOI:10.1016/j.expneurol.2004.10.020]
40. Berezovskaya O. Maysinger D. Fedoroff S. Colony stimulating factor-1 potentiates neuronal survival in cerebral cortex ischemic lesion. Acta Neuropathol. 1996; 92(5): 479-86. [DOI:10.1007/s004010050550]
41. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003; 19(1): 71-82. [DOI:10.1016/S1074-7613(03)00174-2]
42. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): e74-80. [DOI:10.1182/blood-2010-02-258558]
43. Yona S, Jung S. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol. 2010; 17(1): 53-9. [DOI:10.1097/MOH.0b013e3283324f80]
44. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Sullivan J, Courties G, et al. Terapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011; 29(11): 1005-10. [DOI:10.1038/nbt.1989]
45. Ransohoff RM. Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. J Leukoc Biol. 1997; 62(5): 645-52. [DOI:10.1002/jlb.62.5.645]
46. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007; 204(12): 3037-47. [DOI:10.1084/jem.20070885]
47. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci. 2007; 10(12): 1544-53. [DOI:10.1038/nn2015]
48. Mahad D, Callahan MK, Williams KA, Ubogu EE, Kivisäkk P, Tucky B, et al. Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. Brain. 2006; 129(1): 212-23. [DOI:10.1093/brain/awh655]
49. Ricardo SD, Van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008; 118(11): 3522-30. [DOI:10.1172/JCI36150]
50. King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009; 113(14): 3190-7. [DOI:10.1182/blood-2008-07-168575]
51. Tawer S, Mawhinney L, Chadwick K, de Chickera SN, Weaver LC, Brown A, et al. Temporal changes in monocyte and macrophage subsets and microglial macrophages following spinal cord injury in the lys-egfp-ki mouse model. J Neuroimmunol. 2013; 261(1): 7-20. [DOI:10.1016/j.jneuroim.2013.04.008]
52. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al. Infiltrating blood-derived macrophages are vital cells playing an anti inflammatory role in recovery from spinal cord injury in mice. Plos Med. 2009; 6(7). doi: 10.1371/journal.pmed. [DOI:10.1371/journal.pmed.1000113]
53. Longbrake EE, Lai W, Ankeny DP, Popovich PG. Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem. 2007; 102(4): 1083-94. [DOI:10.1111/j.1471-4159.2007.04617.x]
54. Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res. 2002; 68(6): 691-702. [DOI:10.1002/jnr.10269]
55. Yin HZ, Hsu CI, Yu S, Shyam Raoc D, Linda Sorkind S, John Weissa H. TNF-alpha triggers rapid membrane insertion of Ca2+ permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury. Exp Neurol. 2012; 238: 93-102. [DOI:10.1016/j.expneurol.2012.08.004]
56. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a Rho-dependent mechanism. J Neurosci. 2002; 22(3): 854-62. [DOI:10.1523/JNEUROSCI.22-03-00854.2002]
57. Sharma A, Sharma HS. Monoclonal antibodies as novel neurotherapeutic agents in CNS injury and repair. Int Rev Neurobiol. 2012; 102: 23-45. [DOI:10.1016/B978-0-12-386986-9.00002-8]
58. Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol. 2007; 500(2): 267-85. [DOI:10.1002/cne.21149]
59. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, et al. Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci. 1999; 19(15): 6248-56. [DOI:10.1523/JNEUROSCI.19-15-06248.1999]
60. Esposito E, Cuzzocrea S. Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci. 2011; 32(2): 107-15. [DOI:10.1016/j.tips.2010.11.009]
61. Huie JR, Baumbauer KM, Lee KH, Lee KH, Bresnahan JC, Beattie MS, et al. Glial tumor necrosis factor alpha (TNFalpha) generates metaplastic inhibition of spinal learning. Plos One. 2012; 7. [DOI:10.1371/journal.pone.0039751]
62. Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S. Late blocking of peripheral TNF-alpha is ineffective after spinal cord injury in mice. Immunobiology. 2013; 218: 281-4. [DOI:10.1016/j.imbio.2012.05.007]
63. Genovese T, Mazzon E, Crisafulli C, Paola RD, Muià C, Esposito E, et al. TNF-α blockage in a mouse model of SCI: evidence for improved outcome. Shock. 2008; 29(1): 32-41. [DOI:10.1097/shk.0b013e318059053a]
64. Wang X. Luo C, Li W, Ping W, Xiaoyang P, Zhengquan Xu, et al. Effect of infliximab combined with methylprednisolone on expressions of NF-kappa B, TRADD and FADD in rat acute spinal cord injury. Spine. 2013; 38(14): E861-9. [DOI:10.1097/BRS.0b013e318294892c]
65. Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Watanabe S, et al. Tumor necrosis factor-α antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine. 2011; 36(17): 1350-8. [DOI:10.1097/BRS.0b013e3181f014ec]
66. Schwartz M. Tissue-repairing' blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun. 2010; 24(7): 1054-7. [DOI:10.1016/j.bbi.2010.01.010]
67. Bomstein Y, Marder JB, Vitner K, Smirnov I, Lisaey G, Butovsky O, et al. Features of skin coincubated macrophages that promote recovery from spinal cord injury. J Neuroimmunol. 2003; 142(1-2): 10-6. [DOI:10.1016/S0165-5728(03)00260-1]
68. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med. 1998; 4(7): 814-21. [DOI:10.1038/nm0798-814]
69. Klopstein A, Santos-Nogueira E, Francos-Quijorna I, Redensek A, David S, Navarro X, et al. Beneficial effects of αβ-crystallin in spinal cord contusion injury. J Neurosci. 2012; 32(42): 14478-88. [DOI:10.1523/JNEUROSCI.0923-12.2012]
70. van Noort J, Bsibsi M, Nacken P, Gerritsen WH, Amor S, Holtman IR, et al. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heatshock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials. 2013; 34(3): 831-40. [DOI:10.1016/j.biomaterials.2012.10.028]
71. Fleming BD, Mosser DM. Regulatory macrophages: setting the threshold for therapy. Eur J Immunol. 2011; 41(9): 2498-502. [DOI:10.1002/eji.201141717]
72. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 2006; 80(6): 1298-307. [DOI:10.1189/jlb.0406249]
73. Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006; 34(6): 1341-6. [DOI:10.1042/BST0341341]
74. Chawla A. Control of macrophage activation and function by PPARs. Circ Res. 2010; 106(10): 1559-69. [DOI:10.1161/CIRCRESAHA.110.216523]
75. Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007; 6(2): 137-43. [DOI:10.1016/j.cmet.2007.06.010]
76. Yonutas HM, Sullivan PG. Targeting PPAR isoforms following CNS injury. Curr Drug Targets. 2013; 14: 733-42. [DOI:10.2174/1389450111314070003]
77. Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J. Activation of cerebral peroxisome proliferator activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. The FASEB Journal. 2006; 20(8): 1162-75. [DOI:10.1096/fj.05-5007com]
78. Pereira MP, Hurtado O, Cardenas A, Boscá L, Castillo J, Dávalos A, et al. Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J 2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. Journal of Cerebral Blood Flow and Metabolism. 2006; 26(2): 218-29. [DOI:10.1038/sj.jcbfm.9600182]
79. Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, et al. Tiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation afer spinal cord injury in adult rats. J Pharmacol Exp Ther. 2007; 320(3): 1002-12. [DOI:10.1124/jpet.106.113472]
80. McTigue DM, Tripathi R, Wei P, Lash AT. The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol. 2007; 205(2): 396-406. [DOI:10.1016/j.expneurol.2007.02.009]
81. Hyongn A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH, et al. Rosiglitazone, a PPAR gamma agonist, attenuates inflammation afer surgical brain injury in rodents. Brain Res. 2008; 1215: 218-24. [DOI:10.1016/j.brainres.2008.04.025]
82. Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-γ, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cerebr Blood F Met. 2006; 26(6): 811-20. [DOI:10.1038/sj.jcbfm.9600233]
83. Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, et al. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and 15d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat. Brain Res. 2006; 1096(1): 96-203. [DOI:10.1016/j.brainres.2006.04.062]
84. Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE, et al. Peroxisome proliferatoractivated receptor-γ agonist 15-deoxy-Δ12,14 prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2002; 168(5): 2508-15. [DOI:10.4049/jimmunol.168.5.2508]
85. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, et al. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma. 2001; 28(8): 1545-88. [DOI:10.1089/neu.2009.1149]
86. Zhang QZ, Su WR, Shi SH, Smith PW, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010; 28(10): 1856-68. [DOI:10.1002/stem.503]
87. Spaggiari GM, Moretta L. Cellular and molecular interactions of mesenchymal stem cells in innate immunity. Immunol Cell Biol. 2013; 91: 27-31. [DOI:10.1038/icb.2012.62]
88. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009; 37(12): 1445-53. [DOI:10.1016/j.exphem.2009.09.004]
89. Li M, Ikehara S. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int. 2013; 2013: doi: 10.1155/2013/132642. [DOI:10.1155/2013/132642]
90. Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny M, et al. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells. 2012; 4: 101-9. [DOI:10.4252/wjsc.v4.i10.101]
91. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 2009; 126(2): 220-32. [DOI:10.1111/j.1365-2567.2008.02891.x]
92. Kim JW, Ha KY, Molon JN, Kim YH. Bone marrow derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Spine. 2013; 38(17): E1065-74. [DOI:10.1097/BRS.0b013e31829839fa]
93. Boido M, Garbossa D, Fontanella M, Ducati A, Vercelli A. Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression. World Neurosurg. 2012; 81(1): 183-90. [DOI:10.1016/j.wneu.2012.08.014]
94. Quertainmont R, Cantinieaux D, Botman O, Selim Sid, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. Plos One. 2012; 7. [DOI:10.1371/journal.pone.0039500]
95. Park SI, Lim JY, Jeong CH, Kim SM, Jun JA, Jeun SS, et al. Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J Biomed Biotechnol. 2012; 2012: doi: 10.1155/2012/362473. [DOI:10.1155/2012/362473]
96. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012; 29(8): 1614-25. [DOI:10.1089/neu.2011.2109]
97. Nishimura S, Yasuda A, Iwai H, Takano M, Kobayashi Y, Nori S, et al. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Molecular Brain. 2013; 6. [DOI:10.1186/1756-6606-6-3]
98. Parr AM, Kulbatskin I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma. 2007; 24(5): 835-45. [DOI:10.1089/neu.2006.3771]
99. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006; 26(13): 3377-89. [DOI:10.1523/JNEUROSCI.4184-05.2006]
100. Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, EB Johnson W, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. Journal of Neuroinflammation. 2012; 9. [DOI:10.1186/1742-2094-9-40]
101. Guo Y, Zhang H, Yang J, S Liu, L Bing, J Gao, et al. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience. 2013; 238: 1-10. [DOI:10.1016/j.neuroscience.2013.01.047]
102. Jiang MH, Chung E, Chi GF, Ahn W, Lim JE, Hong HS, et al. Substance P induces M2- type macrophages after spinal cord injury. Neuroreport. 2012; 23(13): 786-92. [DOI:10.1097/WNR.0b013e3283572206]
103. Bracken MB. Steroids for acute spinal cord injury. Cochrane Database Syst Rev. 2002; 1(1): doi: 10.1002/14651858.CD001046.pub2. [DOI:10.1002/14651858.CD001046.pub2]
104. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004; 172(5): 2731-8. [DOI:10.4049/jimmunol.172.5.2731]
105. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006; 177(10): 7303-11. [DOI:10.4049/jimmunol.177.10.7303]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javdani M, Barzegar-Bafrouei A. The Key Role of Macrophages and Monocytes in Spinal Cord Injury: Development of Novel Therapeutic Approaches. Shefaye Khatam 2020; 8 (4) :90-102
URL: http://shefayekhatam.ir/article-1-2158-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 4 (Autumn 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4660