[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Articles In Press ::
Back to the articles list Back to browse issues page
Bioinformatic Analysis of the Hub Genes Involved in Amyotrophic Lateral Sclerosis Using Microarray Data Analysis
Gelareh Vahabzadeh , Fereshteh Golab *
a. Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran .b. Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. , fgolab520@gmail.com
Abstract:   (48 Views)

Introduction: Amyotrophic Lateral Sclerosis (ALS) is a neurological disorder characterized by progressive motor neuron damage leading to muscle atrophy and various clinical manifestations. However, its underlying mechanisms are still unknown. The prognosis of the disease cannot be accurately determined because of the current lack of suitable biomarkers and targeted therapies. Materials and Methods: In this study, ALS-affected muscle tissue was analyzed using a bioinformatics approach based on the expression dataset GSE139384, which was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the criteria of an adjusted p-value < 0.05 and an absolute log2 fold change (|log2FC|) greater than 2. Then, enrichment analysis was performed, and a protein-protein interaction network was constructed. Hub genes were identified using the CytoHubba computational algorithm in Cytoscape software. Results: Using the GSE13938479, 184 DEGs were identified. Among these DEGs, all of them had increased expression. The most important identified pathways were related to vesicle-mediated transport at the synapse, synaptic vesicle exocytosis, and regulation of neurotransmitter release. Protein-protein interaction network analysis identified 20 hub genes. Several upregulated core genes, including SNAP25, MAPT, SYP, SYN1, DLG4, and HSP90AB1, were identified as being associated with ALS. Conclusion: Using bioinformatics analysis, we identified novel potential biomarkers and disease-related therapeutic targets for patients with ALS. This could enhance our understanding of the molecular processes of this neurodegenerative disease.
 

Keywords: Molecular Biology, Computational Biology, Biomarkers, Gene Expression Profiling
Full-Text [PDF 1724 kb]   (8 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Bioinformatics in Neuroscience
References
1. Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Current opinion in neurology. 2019; 32(5): 6-771. [DOI:10.1097/WCO.0000000000000730]
2. Lin J, Huang P, Chen W, Ye C, Su H, Yao X. Key molecules and pathways underlying sporadic amyotrophic lateral sclerosis: integrated analysis on gene expression profiles of motor neurons. Frontiers in Genetics. 2020; 11:578143. [DOI:10.3389/fgene.2020.578143]
3. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. The Lancet Neurology. 2018; 17(1): 94-102. [DOI:10.1016/S1474-4422(17)30401-5]
4. Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neuroscience Reports. 2022; 44: 12-25. [DOI:10.1016/j.ibneur.2021.12.002]
5. Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, et al. Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis. International journal of molecular sciences. 2022; 23(5): 240. [DOI:10.3390/ijms23052400]
6. Muthmainah M. Unravelling the Genetic Factors in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Cermin Dunia Kedokteran. 2017; 44(2): 401029.
7. Yang F, Mahaman YAR, Zhang B, Wang JZ, Liu R, Liu F, et al. C9orf72 poly‐PR helps p53 escape from the ubiquitin‐proteasome system and promotes its stability. Journal of Neurochemistry. 2023; 166(2): 389-402. [DOI:10.1111/jnc.15872]
8. Verma S, Vats A, Ahuja V, Vats K, Khurana S, Vats Y, et al. Functional consequences of familial ALS‐associated SOD1L84F in neuronal and muscle cells. The FASEB Journal. 2024; 38(3): e.23461. [DOI:10.1096/fj.202301979R]
9. Shtilbans A, Choi S-G, Fowkes ME, Khitrov G, Shahbazi M, Ting J, et al. Differential gene expression in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2011; 12(4): 6-25. [DOI:10.3109/17482968.2011.560946]
10. Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK. Destination amyotrophic lateral sclerosis. Frontiers in Neurology. 2021; 12: 596006. [DOI:10.3389/fneur.2021.596006]
11. Abel O, Powell JF, Andersen PM, Al‐Chalabi A. ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human mutation. 2012; 33(9): 1345-51. [DOI:10.1002/humu.22157]
12. Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and next-generation data analysis for identification of genes and molecular pathways involved in subjects with diabetes and obesity. Medicina. 2023; 59(2): 309. [DOI:10.3390/medicina59020309]
13. Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. International journal of neuroscience. 2017; 127(9): 805-11. [DOI:10.1080/00207454.2016.1248240]
14. Sheoran S. Ultrastructural Analysis Of Proteins Implicated in Synaptic Vesicle Docking and Priming in C. elegans: University of Illinois at Chicago. 2020; 12(01): 03-30.
15. Sabet HS, Sabet FS, Shojaei K, Yaghoubi F, Jafarian M. Biomarkers in Brain Traumatic Injury. The Neuroscience Journal of Shefaye Khatam. 2023; 11(1): 1401-10. [DOI:10.52547/shefa.11.1.133]
16. Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M. SNAP‐25 in neuropsychiatric disorders. Annals of the New York Academy of Sciences. 2009; 1152(1): 93-9. [DOI:10.1111/j.1749-6632.2008.03995.x]
17. Pozzi D, Corradini I, Matteoli M. The control of neuronal calcium homeostasis by SNAP- 25 and its impact on neurotransmitter release. Neuroscience. 2019; 420: 72-8. [DOI:10.1016/j.neuroscience.2018.11.009]
18. Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. Journal of Neural Transmission. 2016; 867: 83-123. [DOI:10.1007/s00702-016-1514-9]
19. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara‐Solarz S, et al. Synaptopathies: synaptic dysfunction in neurological disorders-A review from students to students. Journal of neurochemistry. 2016; 138(6): 785-805. [DOI:10.1111/jnc.13713]
20. Wang Q, Tao S, Xing L, Liu J, Xu C, Xu X, et al. SNAP25 is a potential target for early stage Alzheimer's disease and Parkinson's disease. European journal of medical research. 2023; 28(1): 570. [DOI:10.1186/s40001-023-01360-8]
21. Shu J, Peng F, Li J, Liu Y, Li X, Yuan C. The Relationship between SNAP25 and Some Common Human Neurological Syndromes. Current Pharmaceutical Design. 2024; 30(30): 2378-86. [DOI:10.2174/0113816128305683240621060024]
22. Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clinica Chimica Acta. 2025; 571: 120236. [DOI:10.1016/j.cca.2025.120236]
23. Akbarabadi P, Pourhosseini PS. Alzheimer's Disease: Narrative Review of Clinical Symptoms, Molecular Alterations, and Effective Physical and Biophysical Methods in its Improvement. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 108-18. [DOI:10.52547/shefa.11.1.105]
24. Zhang C-C, Xing A, Tan M-S, Tan L, Yu J-T. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Molecular neurobiology. 2016; 4893: 904-53. [DOI:10.1007/s12035-015-9415-8]
25. Mohmmadpour N. P 97: Neurodegeneration Induced by Tau protein. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 128.
26. Tourtourikov I, Dabchev K, Todorov T, Angelov T, Chamova T, Tournev I, et al. Navigating the ALS Genetic Labyrinth: The Role of MAPT Haplotypes. Genes. 2023; 14(11): 1-12. [DOI:10.3390/genes14112023]
27. Sferra A, Nicita F, Bertini E. Microtubule dysfunction: a common feature of neurodegenerative diseases. International journal of molecular sciences. 2020; 21(19): 7354. [DOI:10.3390/ijms21197354]
28. Schaffert L-N, Carter WG. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain sciences. 2020; 10(4): 232. [DOI:10.3390/brainsci10040232]
29. Sghaier I, Kacem I, Ratti A, Takout K, Abida Y, Peverelli S, et al. Impact of APOE and MAPT genetic profile on the cognitive functions among Amyotrophic Lateral Sclerosis Tunisian patients. Journal of Neural Transmission. 2025; 132(4): 609-618. [DOI:10.1007/s00702-024-02870-3]
30. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Current drug targets. 2018; 19(1): 38-54. [DOI:10.2174/1389450118666170125144557]
31. Kuban W, Daniel WA. Cytochrome P450 expression and regulation in the brain. Drug Metabolism Reviews. 2021; 53(1): 1-29. [DOI:10.1080/03602532.2020.1858856]
32. Ingelman-Sundberg M. Genetic susceptibility to adverse effects of drugs and environmental toxicants: the role of the CYP family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001; 482(1-2): 9-11. [DOI:10.1016/S0027-5107(01)00205-6]
33. Carrì MT, Valle C, Bozzo F, Cozzolino M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Frontiers in cellular neuroscience. 2015; 9-41. [DOI:10.3389/fncel.2015.00041]
34. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine. 2010; 48(5): 629-41. [DOI:10.1016/j.freeradbiomed.2009.11.018]
35. Kamel F, Umbach DM, Bedlack RS, Richards M, Watson M, Alavanja MC, et al. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology. 2012; 33(3): 457-62. [DOI:10.1016/j.neuro.2012.04.001]
36. Dash RP, Babu RJ, Srinivas NR. Two decades-long journey from riluzole to edaravone: revisiting the clinical pharmacokinetics of the only two amyotrophic lateral sclerosis therapeutics. Clinical pharmacokinetics. 2018; 1385: 57-98. [DOI:10.1007/s40262-018-0655-4]
37. Mirza FJ, Zahid S. The role of synapsins in neurological disorders. Neuroscience bulletin. 2018; 34(2): 349-58. [DOI:10.1007/s12264-017-0201-7]
38. Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Progress in neurobiology. 2010; 91(4): 313-48. [DOI:10.1016/j.pneurobio.2010.04.006]
39. Parenti I, Leitão E, Kuechler A, Villard L, Goizet C, Courdier C, et al. The different clinical facets of SYN1-related neurodevelopmental disorders. Frontiers in Cell and Developmental Biology. 2022; 10: 101715. [DOI:10.3389/fcell.2022.1019715]
40. Matijevic T, Knezevic J, Slavica M, Pavelic J. Rett syndrome: from the gene to the disease. European Neurology. 2008; 61(1): 3-10. [DOI:10.1159/000165342]
41. Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, et al. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathologica. 2022; 144(3): 437-64. [DOI:10.1007/s00401-022-02470-z]
42. Xiong J, Duan H, Chen S, Kessi M, He F, Deng X, et al. Familial SYN1 variants related neurodevelopmental disorders in Asian pediatric patients. BMC Medical Genomics. 2021; 1: 9-14. [DOI:10.1186/s12920-021-01028-4]
43. Marcuzzo S, Terragni B, Bonanno S, Isaia D, Cavalcante P, Cappelletti C, et al. Hyperexcitability in cultured cortical neuron networks from the G93A-SOD1 amyotrophic lateral sclerosis model mouse and its molecular correlates. Neuroscience. 2019; 88: 416-99. [DOI:10.1016/j.neuroscience.2019.07.041]
44. Tümer Z, Dye TJ, Prada C, White-Brown AM, MacKenzie A, Levy AM. DLG4-related synaptopathy. 2023.
45. Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Molecular brain. 2017; 1: 1013. [DOI:10.1186/s13041-017-0324-9]
46. Ishiguro A, Ishihama A. ALS-linked TDP-43 mutations interfere with the recruitment of RNA recognition motifs to G-quadruplex RNA. Scientific Reports. 2023; 13(1): 5982. [DOI:10.1038/s41598-023-33172-5]
47. Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, et al. Loss of TDP-43function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Molecular psychiatry. 2023; 28(2): 931-45. [DOI:10.1038/s41380-021-01346-0]
48. Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain. 2017; 12(14): 3252-68. [DOI:10.1093/brain/awx272]
49. Alavian F. Hypothermia and stroke: pros and cons. The Neuroscience Journal of Shefaye Khatam. 2019; 7(2): 83-98. [DOI:10.29252/shefa.7.2.83]
50. Bakhtiari Moghadam B, Shirian S, Safar Mashaie K. The Effect of Astaxanthin on the Treatment of Epilepsy and Brain-Spinal Cord Injury. The Neuroscience Journal of Shefaye Khatam. 2024, 13(1): 87-103. [DOI:10.61186/shefa.13.1.87]
51. Miyazaki D, Nakamura A, Kobayashi C, Kinoshita T, Hineno A, Yoshida K, et al. Elevated serum levels of heat-shock protein (HSP)70 and 90 in patients with ALS. Journal of the Neurological Sciences. 2015; 357: e340. [DOI:10.1016/j.jns.2015.08.1210]
52. Garcia-Toscano L, Currey HN, Hincks JC, Stair JG, Lehrbach NJ, Liachko NF. Decreased Hsp90 activity protects against TDP-43 neurotoxicity in a C. elegans model of amyotrophic lateral sclerosis. PLoS genetics. 2024; 20(12): e. 1011518. [DOI:10.1371/journal.pgen.1011518]
53. O'Neill K, Shaw R, Bolger I, Consortium NA, Tam O, Phatnani H, et al. ALS molecular subtypes are a combination of cellular, genetic, and pathological features learned by deep multiomics classifiers. bioRxiv. 2024; 7: 19.603731. [DOI:10.1101/2024.07.19.603731]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 47 queries by YEKTAWEB 4714