1. Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Current opinion in neurology. 2019; 32(5): 6-771. [ DOI:10.1097/WCO.0000000000000730] 2. Lin J, Huang P, Chen W, Ye C, Su H, Yao X. Key molecules and pathways underlying sporadic amyotrophic lateral sclerosis: integrated analysis on gene expression profiles of motor neurons. Frontiers in Genetics. 2020; 11:578143. [ DOI:10.3389/fgene.2020.578143] 3. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. The Lancet Neurology. 2018; 17(1): 94-102. [ DOI:10.1016/S1474-4422(17)30401-5] 4. Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neuroscience Reports. 2022; 44: 12-25. [ DOI:10.1016/j.ibneur.2021.12.002] 5. Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, et al. Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis. International journal of molecular sciences. 2022; 23(5): 240. [ DOI:10.3390/ijms23052400] 6. Muthmainah M. Unravelling the Genetic Factors in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Cermin Dunia Kedokteran. 2017; 44(2): 401029. 7. Yang F, Mahaman YAR, Zhang B, Wang JZ, Liu R, Liu F, et al. C9orf72 poly‐PR helps p53 escape from the ubiquitin‐proteasome system and promotes its stability. Journal of Neurochemistry. 2023; 166(2): 389-402. [ DOI:10.1111/jnc.15872] 8. Verma S, Vats A, Ahuja V, Vats K, Khurana S, Vats Y, et al. Functional consequences of familial ALS‐associated SOD1L84F in neuronal and muscle cells. The FASEB Journal. 2024; 38(3): e.23461. [ DOI:10.1096/fj.202301979R] 9. Shtilbans A, Choi S-G, Fowkes ME, Khitrov G, Shahbazi M, Ting J, et al. Differential gene expression in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2011; 12(4): 6-25. [ DOI:10.3109/17482968.2011.560946] 10. Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK. Destination amyotrophic lateral sclerosis. Frontiers in Neurology. 2021; 12: 596006. [ DOI:10.3389/fneur.2021.596006] 11. Abel O, Powell JF, Andersen PM, Al‐Chalabi A. ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human mutation. 2012; 33(9): 1345-51. [ DOI:10.1002/humu.22157] 12. Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and next-generation data analysis for identification of genes and molecular pathways involved in subjects with diabetes and obesity. Medicina. 2023; 59(2): 309. [ DOI:10.3390/medicina59020309] 13. Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. International journal of neuroscience. 2017; 127(9): 805-11. [ DOI:10.1080/00207454.2016.1248240] 14. Sheoran S. Ultrastructural Analysis Of Proteins Implicated in Synaptic Vesicle Docking and Priming in C. elegans: University of Illinois at Chicago. 2020; 12(01): 03-30. 15. Sabet HS, Sabet FS, Shojaei K, Yaghoubi F, Jafarian M. Biomarkers in Brain Traumatic Injury. The Neuroscience Journal of Shefaye Khatam. 2023; 11(1): 1401-10. [ DOI:10.52547/shefa.11.1.133] 16. Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M. SNAP‐25 in neuropsychiatric disorders. Annals of the New York Academy of Sciences. 2009; 1152(1): 93-9. [ DOI:10.1111/j.1749-6632.2008.03995.x] 17. Pozzi D, Corradini I, Matteoli M. The control of neuronal calcium homeostasis by SNAP- 25 and its impact on neurotransmitter release. Neuroscience. 2019; 420: 72-8. [ DOI:10.1016/j.neuroscience.2018.11.009] 18. Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. Journal of Neural Transmission. 2016; 867: 83-123. [ DOI:10.1007/s00702-016-1514-9] 19. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara‐Solarz S, et al. Synaptopathies: synaptic dysfunction in neurological disorders-A review from students to students. Journal of neurochemistry. 2016; 138(6): 785-805. [ DOI:10.1111/jnc.13713] 20. Wang Q, Tao S, Xing L, Liu J, Xu C, Xu X, et al. SNAP25 is a potential target for early stage Alzheimer's disease and Parkinson's disease. European journal of medical research. 2023; 28(1): 570. [ DOI:10.1186/s40001-023-01360-8] 21. Shu J, Peng F, Li J, Liu Y, Li X, Yuan C. The Relationship between SNAP25 and Some Common Human Neurological Syndromes. Current Pharmaceutical Design. 2024; 30(30): 2378-86. [ DOI:10.2174/0113816128305683240621060024] 22. Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clinica Chimica Acta. 2025; 571: 120236. [ DOI:10.1016/j.cca.2025.120236] 23. Akbarabadi P, Pourhosseini PS. Alzheimer's Disease: Narrative Review of Clinical Symptoms, Molecular Alterations, and Effective Physical and Biophysical Methods in its Improvement. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 108-18. [ DOI:10.52547/shefa.11.1.105] 24. Zhang C-C, Xing A, Tan M-S, Tan L, Yu J-T. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Molecular neurobiology. 2016; 4893: 904-53. [ DOI:10.1007/s12035-015-9415-8] 25. Mohmmadpour N. P 97: Neurodegeneration Induced by Tau protein. The Neuroscience Journal of Shefaye Khatam. 2017; 5(2): 128. 26. Tourtourikov I, Dabchev K, Todorov T, Angelov T, Chamova T, Tournev I, et al. Navigating the ALS Genetic Labyrinth: The Role of MAPT Haplotypes. Genes. 2023; 14(11): 1-12. [ DOI:10.3390/genes14112023] 27. Sferra A, Nicita F, Bertini E. Microtubule dysfunction: a common feature of neurodegenerative diseases. International journal of molecular sciences. 2020; 21(19): 7354. [ DOI:10.3390/ijms21197354] 28. Schaffert L-N, Carter WG. Do post-translational modifications influence protein aggregation in neurodegenerative diseases: a systematic review. Brain sciences. 2020; 10(4): 232. [ DOI:10.3390/brainsci10040232] 29. Sghaier I, Kacem I, Ratti A, Takout K, Abida Y, Peverelli S, et al. Impact of APOE and MAPT genetic profile on the cognitive functions among Amyotrophic Lateral Sclerosis Tunisian patients. Journal of Neural Transmission. 2025; 132(4): 609-618. [ DOI:10.1007/s00702-024-02870-3] 30. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Current drug targets. 2018; 19(1): 38-54. [ DOI:10.2174/1389450118666170125144557] 31. Kuban W, Daniel WA. Cytochrome P450 expression and regulation in the brain. Drug Metabolism Reviews. 2021; 53(1): 1-29. [ DOI:10.1080/03602532.2020.1858856] 32. Ingelman-Sundberg M. Genetic susceptibility to adverse effects of drugs and environmental toxicants: the role of the CYP family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001; 482(1-2): 9-11. [ DOI:10.1016/S0027-5107(01)00205-6] 33. Carrì MT, Valle C, Bozzo F, Cozzolino M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Frontiers in cellular neuroscience. 2015; 9-41. [ DOI:10.3389/fncel.2015.00041] 34. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine. 2010; 48(5): 629-41. [ DOI:10.1016/j.freeradbiomed.2009.11.018] 35. Kamel F, Umbach DM, Bedlack RS, Richards M, Watson M, Alavanja MC, et al. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology. 2012; 33(3): 457-62. [ DOI:10.1016/j.neuro.2012.04.001] 36. Dash RP, Babu RJ, Srinivas NR. Two decades-long journey from riluzole to edaravone: revisiting the clinical pharmacokinetics of the only two amyotrophic lateral sclerosis therapeutics. Clinical pharmacokinetics. 2018; 1385: 57-98. [ DOI:10.1007/s40262-018-0655-4] 37. Mirza FJ, Zahid S. The role of synapsins in neurological disorders. Neuroscience bulletin. 2018; 34(2): 349-58. [ DOI:10.1007/s12264-017-0201-7] 38. Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Progress in neurobiology. 2010; 91(4): 313-48. [ DOI:10.1016/j.pneurobio.2010.04.006] 39. Parenti I, Leitão E, Kuechler A, Villard L, Goizet C, Courdier C, et al. The different clinical facets of SYN1-related neurodevelopmental disorders. Frontiers in Cell and Developmental Biology. 2022; 10: 101715. [ DOI:10.3389/fcell.2022.1019715] 40. Matijevic T, Knezevic J, Slavica M, Pavelic J. Rett syndrome: from the gene to the disease. European Neurology. 2008; 61(1): 3-10. [ DOI:10.1159/000165342] 41. Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, et al. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathologica. 2022; 144(3): 437-64. [ DOI:10.1007/s00401-022-02470-z] 42. Xiong J, Duan H, Chen S, Kessi M, He F, Deng X, et al. Familial SYN1 variants related neurodevelopmental disorders in Asian pediatric patients. BMC Medical Genomics. 2021; 1: 9-14. [ DOI:10.1186/s12920-021-01028-4] 43. Marcuzzo S, Terragni B, Bonanno S, Isaia D, Cavalcante P, Cappelletti C, et al. Hyperexcitability in cultured cortical neuron networks from the G93A-SOD1 amyotrophic lateral sclerosis model mouse and its molecular correlates. Neuroscience. 2019; 88: 416-99. [ DOI:10.1016/j.neuroscience.2019.07.041] 44. Tümer Z, Dye TJ, Prada C, White-Brown AM, MacKenzie A, Levy AM. DLG4-related synaptopathy. 2023. 45. Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Molecular brain. 2017; 1: 1013. [ DOI:10.1186/s13041-017-0324-9] 46. Ishiguro A, Ishihama A. ALS-linked TDP-43 mutations interfere with the recruitment of RNA recognition motifs to G-quadruplex RNA. Scientific Reports. 2023; 13(1): 5982. [ DOI:10.1038/s41598-023-33172-5] 47. Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, et al. Loss of TDP-43function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Molecular psychiatry. 2023; 28(2): 931-45. [ DOI:10.1038/s41380-021-01346-0] 48. Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, et al. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain. 2017; 12(14): 3252-68. [ DOI:10.1093/brain/awx272] 49. Alavian F. Hypothermia and stroke: pros and cons. The Neuroscience Journal of Shefaye Khatam. 2019; 7(2): 83-98. [ DOI:10.29252/shefa.7.2.83] 50. Bakhtiari Moghadam B, Shirian S, Safar Mashaie K. The Effect of Astaxanthin on the Treatment of Epilepsy and Brain-Spinal Cord Injury. The Neuroscience Journal of Shefaye Khatam. 2024, 13(1): 87-103. [ DOI:10.61186/shefa.13.1.87] 51. Miyazaki D, Nakamura A, Kobayashi C, Kinoshita T, Hineno A, Yoshida K, et al. Elevated serum levels of heat-shock protein (HSP)70 and 90 in patients with ALS. Journal of the Neurological Sciences. 2015; 357: e340. [ DOI:10.1016/j.jns.2015.08.1210] 52. Garcia-Toscano L, Currey HN, Hincks JC, Stair JG, Lehrbach NJ, Liachko NF. Decreased Hsp90 activity protects against TDP-43 neurotoxicity in a C. elegans model of amyotrophic lateral sclerosis. PLoS genetics. 2024; 20(12): e. 1011518. [ DOI:10.1371/journal.pgen.1011518] 53. O'Neill K, Shaw R, Bolger I, Consortium NA, Tam O, Phatnani H, et al. ALS molecular subtypes are a combination of cellular, genetic, and pathological features learned by deep multiomics classifiers. bioRxiv. 2024; 7: 19.603731. [ DOI:10.1101/2024.07.19.603731]
|