[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
     
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: مقالات در حال انتشار ::
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
نشانگرهای زیستی عصبی- شیمیایی در آسیب طناب نخاعی: یک مطالعه روایی
فائزه یعقوبی ، ثمینه مشایخی ، حوریه سادات ثابت ، پارسا علیجانی زاده ، کیارش سالکی ، سید خلیل پسته‌ای ، مریم جعفریان*
الف. مرکز تحقیقات ضایعات مغز و نخاع، پژوهشکده علوم اعصاب، دانشگاه علوم پزشکی تهران، تهران، ایران. ب. مرکز تحقیقات علوم اعصاب شفا، بیمارستان خاتم االانبیاء، تهران، ایران. ، mjafarian@sina.tums.ac.ir
چکیده:   (54 مشاهده)
مقدمه: علیرغم پیشرفت‌های قابل توجه در مراقبت‌های بالینی، آسیب‌های نخاعی و عوارض پایدار همراه آن همچنان یک وضعیت غیرقابل درمان با عواقب جسمی و روانی مخرب برای بیماران و مراقبان است. تشخیص بالینی آسیب‌های نخاعی عمدتاً بر مبنی اختلالات عصبی است. در سال‌های اخیر، از تکنیک‌های تصویربرداری برای ارزیابی آسیب‌های حاد نخاعی استفاده شده است. با این حال، در بسیاری از مراکز، تکنیک‌های تصویربرداری پیشرفته در دسترس نیستند یا وضعیت ناپایدار بیمار استفاده از رویکردهای پیشرفته را محدود می‌کند. از آنجا که پیش‌بینی قابل اعتماد بهبودی در مرحله حاد برای انتخاب درمان محافظت‌کننده عصبی مناسب حیاتی است ، نیاز مبرمی به شناسایی و بکارگیری روش‌های جدید برای پیش‌بینی و برنامه‌ریزی دقیق‌تر جهت کاهش عوارض دائمی وجود دارد.شناسایی نشانگرهای زیستی برای پیش‌بینی آسیب نخاعی به مدیریت بیماران آسیب‌دیده کمک می‌کند و از تشخیص و درمان دقیق پشتیبانی می‌کند. برخی از پروتئین‌ها به‌عنوان نشانگرهای زیستی امیدوارکننده برای آسیب سیستم عصبی مرکزی، چه در مایع مغزی نخاعی (CSF) و چه در سرم خون، شناسایی شده‌اند. هدف این بررسی ارزیابی نقش‌های تشخیصی و پیش‌آگهی این پروتئین‌ها و نشانگرهای زیستی عصبی- ساختاری در آسیب نخاعی است. نتیجه‌گیری: شناسایی نشانگرهای زیستی- شیمیایی در مدیریت آسیب طناب نخاعی از اهمیت بالینی چشمگیری برخوردار است. این نشانگرها پتانسیل قابل توجهی برای ارزیابی عینی شدت آسیب اولیه، پیش‌بینی پیامد عصبی و پایش بهبودی و عوارض ثانویه دارند. مطالعات نشان می‌دهد می‌دهند که سطح این نشانگرها در سرم خون و مایع مغزی- نخاعی با درجه آسیب بر اساس مقیاس های بالینی استاندارد همبستگی دارد و می‌تواند بین بیماران با پیش‌آگهی خوب و ضعیف تمایز قائل شود. با توجه به دسترسی محدود و ماهیت تهاجمی نمونه‌برداری از CSF، تحقیقات به طور چشمگیری بر شناسایی نشانگرهای زیستی قابل اعتماد مبتنی بر سرم متمرکز شده‌اند. علاوه بر این، پویایی زمانی متمایز بیان نشانگرهای زیستی در مرحله حاد (منعکس‌کننده آسیب اولیه) در مقابل مرحله مزمن (تحت تأثیر عوارض سیستمیک) نیاز به تعریف نشانگرهای خاص مناسب برای هر مرحله را برجسته می‌کند.
 
واژه‌های کلیدی: پیش آگهی، بیماری‌های عصبی- التهابی، عوامل بیولوژیکی، نشانگرهای زیستی
متن کامل [PDF 2142 kb]   (3 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: نوروفيزيولوژي
فهرست منابع
1. Yaghoubi F, Vazir B, Hesaraki S, Omidi A, Hadjighassem M, Jafarian M. Investigating the Effect of Neuro-Motor Rehabilitation on Myelin Regeneration after Spinal Cord Injury Model in Rats.
2. Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. International journal of molecular sciences. 2019; 20(11): 2698. [DOI:10.3390/ijms20112698]
3. Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Molecular Medicine. 2020; 12(3): e11505. [DOI:10.15252/emmm.201911505]
4. Jafarimanesh MA, Ai J, Shojae S, Khonakdar HA, Darb Emamieh G, Shirian S. A Review of Treatment Approaches for Spinal Cord Injury Improvement. The Neuroscience Journal of Shefaye Khatam. 2023; 12(1): 111-20. [DOI:10.61186/shefa.12.1.111]
5. Abdolahi S, Aligholi H, Shirian S. Cell Therapy Strategies in the Repair of Spinal Cord Injury: Pros and Cons. The Neuroscience Journal of Shefaye Khatam. 2016; 4(1): 55-66. [DOI:10.18869/acadpub.shefa.4.1.55]
6. Leister I, Haider T, Mattiassich G, Kramer JLK, Linde LD, Pajalic A, et al. Biomarkers in Traumatic Spinal Cord Injury-Technical and Clinical Considerations: A Systematic Review. Neurorehabil Neural Repair. 2020; 34(2): 95-110. [DOI:10.1177/1545968319899920]
7. Rodrigues LF, Moura-Neto V, TCLS ES. Biomarkers in Spinal Cord Injury: from Prognosis to Treatment. Mol Neurobiol. 2018; 55(8): 6436-48. [DOI:10.1007/s12035-017-0858-y]
8. Haider T, Höftberger R, Rüger B, Mildner M, Blumer R, Mitterbauer A, et al. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp Neurol. 2015; 267: 230-42. [DOI:10.1016/j.expneurol.2015.03.013]
9. Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Frontiers in Neuroscience. 2023; 17: 1309172. [DOI:10.3389/fnins.2023.1309172]
10. Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, et al. Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: A systematic review. J Neurochem. 2019; 149(3): 317-30. [DOI:10.1111/jnc.14637]
11. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010; 5(6): 463-6. [DOI:10.1097/COH.0b013e32833ed177]
12. Du W, Li H, Sun J, Xia Y, Zhu R, Zhang X, et al. The Prognostic Value of Serum Neuron Specific Enolase (NSE) and S100B Level in Patients of Acute Spinal Cord Injury. Med Sci Monit. 2018; 24: 4510-5. [DOI:10.12659/MSM.907406]
13. Wu Y, Streijger F, Wang Y, Lin G, Christie S, Mac-Thiong JM, et al. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Sci Rep. 2016; 6: 38718. [DOI:10.1038/srep38718]
14. Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: a target for treatment in spinal cord injury. Cells. 2022; 11(17): 2692. [DOI:10.3390/cells11172692]
15. Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Progress in brain research. 2015; 218: 15-54. [DOI:10.1016/bs.pbr.2014.12.007]
16. Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. Journal of neurotrauma. 2004; 21(10): 1355-70. [DOI:10.1089/neu.2004.21.1355]
17. Guest J, Datta N, Jimsheleishvili G, Gater DR. Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of Personalized Medicine. 2022; 12(7): 1126. [DOI:10.3390/jpm12071126]
18. Dias DO, Kalkitsas J, Kelahmetoglu Y, Estrada CP, Tatarishvili J, Holl D, et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nature communications. 2021; 12(1): 1-24. [DOI:10.1038/s41467-021-25585-5]
19. Islam F, Bepary S, Nafady MH, Islam M, Emran TB, Sultana S, et al. Polyphenols targeting oxidative stress in spinal cord injury: Current status and future vision. Oxidative Medicine and Cellular Longevity. 2022; 2022. [DOI:10.1155/2022/8741787]
20. Saadoun S, Papadopoulos MC. Targeted perfusion therapy in spinal cord trauma. Neurotherapeutics. 2020; 17(2): 511-21. [DOI:10.1007/s13311-019-00820-6]
21. Gazdic M, Volarevic V, Harrell CR, Fellabaum C, Jovicic N, Arsenijevic N, et al. Stem cells therapy for spinal cord injury. International journal of molecular sciences. 2018; 19(4): 1039. [DOI:10.3390/ijms19041039]
22. Gashmardi N, Edalatmanesh MA. Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury. The Neuroscience Journal of Shefaye Khatam. 2019; 7(4): 89-105. [DOI:10.29252/shefa.7.4.89]
23. Ziegler G, Grabher P, Thompson A, Altmann D, Hupp M, Ashburner J, et al. Progressive neurodegeneration following spinal cord injury: implications for clinical trials. Neurology. 2018; 90(14): e1257-e66. [DOI:10.1212/WNL.0000000000005258]
24. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008; 25(5): E2. [DOI:10.3171/FOC.2008.25.11.E2]
25. Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol. 2016; 173(4): 681-91. [DOI:10.1111/bph.13179]
26. Payne SC, Bartlett CA, Savigni DL, Harvey AR, Dunlop SA, Fitzgerald M. Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a CNS white matter tract. PLoS One. 2013; 8(6): e65710. [DOI:10.1371/journal.pone.0065710]
27. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PloS one. 2012; 7(5): e37589. [DOI:10.1371/journal.pone.0037589]
28. Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. 022 :29; 11(17): 2692. [DOI:10.3390/cells11172692]
29. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BioMed research international. 2013; 2013. [DOI:10.1155/2013/786475]
30. Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury. Cell Transplantation. 2013; 22(4): 571-617. [DOI:10.3727/096368912X655208]
31. Hulme CH, Brown SJ, Fuller HR, Riddell J, Osman A, Chowdhury J, et al. The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord. 2017; 55(2): 114-25. [DOI:10.1038/sc.2016.174]
32. Liu Z, Gao H, Man Y, Zhang X, Chen L, Yang M, et al. Serum biomarkers in the diagnosis and prognosis of traumatic spinal cord injury: A systematic review and meta-analysis. Journal of Neurorestoratology. 2025; 13(5): 100227. [DOI:10.1016/j.jnrt.2025.100227]
33. Badhiwala JH, Wilson JR, Kwon BK, Casha S, Fehlings MG. A Review of Clinical Trials in Spinal Cord Injury Including Biomarkers. J Neurotrauma. 2018; 35(16): 1906-17. [DOI:10.1089/neu.2018.5935]
34. Wu Y, Streijger F, Wang Y, Lin G, Christie S, Mac-Thiong J-M, et al. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Scientific Reports. 2016; 6(1): 38718. [DOI:10.1038/srep38718]
35. Kapoor D, Xu C. Spinal Cord Injury AIS Predictions Using Machine Learning. eNeuro. 2023; 10(1). [DOI:10.1523/ENEURO.0149-22.2022]
36. Shang AJ, Yang Y, Wang HY, Tao BZ, Wang J, Wang ZF, et al. Spinal cord injury effectively ameliorated by neuroprotective effects of rosmarinic acid. Nutr Neurosci. 2017; 20(3): 172-9. [DOI:10.1080/1028415X.2015.1103460]
37. Fraussen J, In't Veld SGJG, van Laake-Geelen CCM, Depreitere B, Deckers J, Peuskens D, et al. Longitudinal Plasma Biomarker Profiles Predict Neurological Outcome in Traumatic Spinal Cord Injury. Annals of Neurology. 2025; 97(6): 1180-9. [DOI:10.1002/ana.27198]
38. Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, et al. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochemistry International. 2024; 181: 105890. [DOI:10.1016/j.neuint.2024.105890]
39. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010; 27(4): 669-82. [DOI:10.1089/neu.2009.1080]
40. Cohen L, Keegan A, Walt DR. Single-Molecule Arrays for Ultrasensitive Detection of Blood-Based Biomarkers for Immunotherapy. In: Thurin M, Cesano A, Marincola FM, editors. Biomarkers for Immunotherapy of Cancer: Methods and Protocols. New York, NY: Springer New York; 2020. p. 399-412. [DOI:10.1007/978-1-4939-9773-2_18]
41. Skinnider MA, Rogalski J, Tigchelaar S, Manouchehri N, Prudova A, Jackson AM, et al. Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics. 2021; 20: 100096. [DOI:10.1016/j.mcpro.2021.100096]
42. Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, et al. Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum. Neurochem Int. 2024; 181: 105890. [DOI:10.1016/j.neuint.2024.105890]
43. Cortez R, Levi AD. Acute spinal cord injury. Curr Treat Options Neurol. 2007; 9(2): 115-25. [DOI:10.1007/s11940-007-0037-y]
44. Chen X, Yu D. Metabolomics study of oral cancers. Metabolomics. 2019; 15(2): 22. [DOI:10.1007/s11306-019-1483-8]
45. Boehl G, Raguindin PF, Valido E, Bertolo A, Itodo OA, Minder B, et al. Endocrinological and inflammatory markers in individuals with spinal cord injury: A systematic review and meta-analysis. Rev Endocr Metab Disord. 2022; 23(5): 1035-50. [DOI:10.1007/s11154-022-09742-9]
46. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol. 2019; 10: 282. [DOI:10.3389/fneur.2019.00282]
47. Donato R. S-100 proteins. Cell Calcium. 1986; 7(3): 123-45. [DOI:10.1016/0143-4160(86)90017-5]
48. Zigouris A, Kafritsas G, Alexiou GA, Voulgaris S. Chapter 15 - S100b in spinal cord injury. In: Rajendram R, Preedy VR, Martin CR, editors. Diagnosis and Treatment of Spinal Cord Injury: Academic Press; 2022. p. 191-8. [DOI:10.1016/B978-0-12-822498-4.00015-4]
49. Kwon BK, Streijger F, Fallah N, Noonan VK, Bélanger LM, Ritchie L, et al. Cerebrospinal Fluid Biomarkers To Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury. J Neurotrauma. 2017; 34(3): 567-80. [DOI:10.1089/neu.2016.4435]
50. Dalkilic T, Fallah N, Noonan VK, Salimi Elizei S, Dong K, Belanger L, et al. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. J Neurotrauma. 2018; 35(3): 435-45. [DOI:10.1089/neu.2017.5357]
51. Pouw MH, Kwon BK, Verbeek MM, Vos PE, van Kampen A, Fisher CG, et al. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord. 2014; 52(6): 428-33. [DOI:10.1038/sc.2014.26]
52. Wolf H, Krall C, Pajenda G, Leitgeb J, Bukaty AJ, Hajdu S, et al. Alterations of the biomarker S-100B and NSE in patients with acute vertebral spine fractures. Spine J. 2014; 14(12): 2918-22. [DOI:10.1016/j.spinee.2014.04.027]
53. Schachner M, Hedley-Whyte ET, Hsu DW, Schoonmaker G, Bignami A. Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling. J Cell Biol. 1977; 75(1): 67-73. [DOI:10.1083/jcb.75.1.67]
54. Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, et al. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg. 2015; 83(5): 867-78. [DOI:10.1016/j.wneu.2013.03.012]
55. Leister I, Altendorfer B, Maier D, Mach O, Wutte C, Grillhösl A, et al. Trajectory of Serum Levels of Glial Fibrillary Acidic Protein Within Four Weeks Post-Injury Is Related to Neurological Recovery During the Transition from Acute to Chronic Spinal Cord Injury. J Neurotrauma. 2023; 40(9-10): 999-1006. [DOI:10.1089/neu.2022.0326]
56. Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, et al. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front Neurol. 2019; 10:27. [DOI:10.3389/fneur.2019.00027]
57. Ljubisavljevic S, Stojanovic I, Cvetkovic T, Vojinovic S, Stojanov D, Stojanovic D, et al. Glutathione homeostasis disruption of erythrocytes, but not glutathione peroxidase activity change, is closely accompanied with neurological and radiological scoring of acute CNS inflammation. Neuroimmunomodulation. 2014; 21(1): 13-20. [DOI:10.1159/000355040]
58. Davies AL, Hayes KC, Dekaban GA. Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil. 2007; 88(11): 1384-93. [DOI:10.1016/j.apmr.2007.08.004]
59. Biglari B, Swing T, Child C, Büchler A, Westhauser F, Bruckner T, et al. A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: the serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord. 2015; 53(7): 510-4. [DOI:10.1038/sc.2015.28]
60. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity. 2001; 14(6): 705-14. [DOI:10.1016/S1074-7613(01)00151-0]
61. Lacroix S, Chang L, Rose-John S, Tuszynski MH. Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J Comp Neurol. 2002; 454(3): 213-28. [DOI:10.1002/cne.10407]
62. Nakamura M, Okada S, Toyama Y, Okano H. Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol. 2005; 28(3): 197-204. [DOI:10.1385/CRIAI:28:3:197]
63. Heller RA, Raven TF, Swing T, Kunzmann K, Daniel V, Haubruck P, et al. CCL-2 as a possible early marker for remission after traumatic spinal cord injury. Spinal Cord. 2017; 55(11): 1002-9. [DOI:10.1038/sc.2017.69]
64. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013; 93(4): 1543-62. [DOI:10.1152/physrev.00011.2013]
65. Garcia TA, Jonak CR, Binder DK. The Role of Aquaporins in Spinal Cord Injury. Cells. 2023; 12(13). [DOI:10.3390/cells12131701]
66. Saadoun S, Papadopoulos MC. Aquaporin-4 in brain and spinal cord oedema. Neuroscience. 2010 28; 168(4): 1036-46. [DOI:10.1016/j.neuroscience.2009.08.019]
67. Pan Q-L, Lin F-X, Liu N, Chen R-C. The role of aquaporin 4 (AQP4) in spinal cord injury. Biomedicine & Pharmacotherapy. 2022; 145: 112384. [DOI:10.1016/j.biopha.2021.112384]
68. Tabernero A, Gangoso E, Jaraíz-Rodríguez M, Medina JM. The role of connexin43-Src interaction in astrocytomas: A molecular puzzle. Neuroscience. 2016; 323: 183-94. [DOI:10.1016/j.neuroscience.2015.02.029]
69. Freitas-Andrade M, Naus CC. Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience. 2016; 323: 207-21. [DOI:10.1016/j.neuroscience.2015.04.035]
70. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016; 533(7604): 493-8. [DOI:10.1038/nature18268]
71. O'Carroll SJ, Alkadhi M, Nicholson LFB, Green CR. Connexin43 Mimetic Peptides Reduce Swelling, Astrogliosis, and Neuronal Cell Death after Spinal Cord Injury. Cell Communication & Adhesion. 2008; 15(1-2): 27-42. [DOI:10.1080/15419060802014164]
72. Theriault E, Frankenstein UN, Hertzberg EL, Nagy JI. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J Comp Neurol. 1997; 382(2): 199-214. https://doi.org/10.1002/(SICI)1096-9861(19970602)382:2<199::AID-CNE5>3.0.CO;2-Z [DOI:10.1002/(SICI)1096-9861(19970602)382:23.0.CO;2-Z]
73. Zhang C, Yan Z, Maknojia A, Riquelme MA, Gu S, Booher G, et al. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 2021; 6(5). [DOI:10.1172/jci.insight.134611]
74. Hai T, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes & development. 1989; 3(12b): 2083-90. [DOI:10.1101/gad.3.12b.2083]
75. Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Frontiers in molecular neuroscience. 2012; 5: 7. [DOI:10.3389/fnmol.2012.00007]
76. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. ATF3 and stress responses. Gene expression. 2018; 7(4-5-6): 321.
77. Huang W, George K, Ibba V, Liu M, Averill S, Quartu M, et al. The characteristics of neuronal injury in a static compression model of spinal cord injury in adult rats. European Journal of Neuroscience. 2007; 25(2): 362-72. [DOI:10.1111/j.1460-9568.2006.05284.x]
78. Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. Journal of Neuroscience. 2007; 27(30): 7911-20. [DOI:10.1523/JNEUROSCI.5313-06.2007]
79. Li XY, Feng DF. Diffuse axonal injury: novel insights into detection and treatment. J Clin Neurosci. 2009; 16(5): 614-9. [DOI:10.1016/j.jocn.2008.08.005]
80. Loy DN, Sroufe AE, Pelt JL, Burke DA, Cao QL, Talbott JF, et al. Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100beta. Neurosurgery. 2005; 56(2): 391-7; discussion-7. [DOI:10.1227/01.NEU.0000148906.83616.D2]
81. Ahadi R, Khodagholi F, Daneshi A, Vafaei A, Mafi AA, Jorjani M. Diagnostic Value of Serum Levels of GFAP, pNF-H, and NSE Compared With Clinical Findings in Severity Assessment of Human Traumatic Spinal Cord Injury. Spine (Phila Pa 1976). 2015; 40(14): E823-30. [DOI:10.1097/BRS.0000000000000654]
82. Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Tanaka Y, et al. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord. 2012; 50(7): 493-6. [DOI:10.1038/sc.2011.184]
83. Ungureanu D, Iencean ŞM, Dimitriu C, Iencean AŞ, Tascu A. Determination of the phosphorylated neurofilament subunit NF-H (pNF-H) in cerebro-spinal fluid as biomarker in acute traumatic spinal cord injuries/Dozarea neurofilamentelor fosforilate (subunitatea pNF-H) ȋn LCR ca biomarker ȋn traumatismul vertebro-medular acut. Revista Romana de Medicina de Laborator. 2014; 22(3): 377-86. [DOI:10.2478/rrlm-2014-0029]
84. Bartholdi D, Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci. 1997; 9(7): 1422-38. [DOI:10.1111/j.1460-9568.1997.tb01497.x]
85. Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage-Mediated Activation of Wnt/β-Catenin Pathway. Mol Neurobiol. 2020; 57(4): 1847-62. [DOI:10.1007/s12035-019-01851-y]
86. Xu J, E X, Liu H, Li F, Cao Y, Tian J, et al. Tumor necrosis factor-alpha is a potential diagnostic biomarker for chronic neuropathic pain after spinal cord injury. Neurosci Lett. 2015; 595: 30-4. [DOI:10.1016/j.neulet.2015.04.004]
87. Winnerkvist A, Anderson RE, Hansson LO, Rosengren L, Estrera AE, Huynh TT, et al. Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur J Cardiothorac Surg. 2007; 31(4): 637-42. [DOI:10.1016/j.ejcts.2007.01.007]
88. Kuhle J, Gaiottino J, Leppert D, Petzold A, Bestwick JP, Malaspina A, et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry. 2015; 86(3): 273-9. [DOI:10.1136/jnnp-2013-307454]
89. Hassanshahi G, Amin M, Shunmugavel A, Vazirinejad R, Vakilian A, Sanji M, et al. Temporal expression profile of CXC chemokines in serum of patients with spinal cord injury. Neurochem Int. 2013; 63(5): 363-7. [DOI:10.1016/j.neuint.2013.07.012]
90. Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res. 2020; 8(1): 42. [DOI:10.1038/s41413-020-00119-9]
91. Jørgensen V, Slettahjell HB, Skavberg Roaldsen K, Kostovski E. Carboxy terminal collagen crosslinks as a prognostic risk factor for fall-related fractures in individuals with established spinal cord injury. Spinal Cord. 2019; 57(11): 985-91. [DOI:10.1038/s41393-019-0322-0]
92. Gifre L, Ruiz-Gaspà S, Carrasco JL, Portell E, Vidal J, Muxi A, et al. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy. Osteoporos Int. 2017; 28(9): 2707-15. [DOI:10.1007/s00198-017-4090-4]
93. Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 2013; 16(8): 1024-31. [DOI:10.1038/nn.3438]
94. Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev. 2015; 82-83: 153-9. [DOI:10.1016/j.addr.2014.11.007]
95. MacDiarmid SA, McIntyre WJ, Anthony A, Bailey RR, Turner JG, Arnold EP. Monitoring of renal function in patients with spinal cord injury. BJU Int. 2000; 85(9): 1014-8. [DOI:10.1046/j.1464-410x.2000.00680.x]
96. Krishnan S, Karg PE, Boninger ML, Vodovotz Y, Constantine G, Sowa GA, et al. Early Detection of Pressure Ulcer Development Following Traumatic Spinal Cord Injury Using Inflammatory Mediators. Arch Phys Med Rehabil. 2016; 97(10): 1656-62. [DOI:10.1016/j.apmr.2016.01.003]
97. Krishnan S, Vodovotz Y, Karg PE, Constantine G, Sowa GA, Constantine FJ, et al. Inflammatory Mediators Associated With Pressure Ulcer Development in Individuals With Pneumonia After Traumatic Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2017; 98(9): 1792-9. [DOI:10.1016/j.apmr.2016.12.018]
98. Piran S, Schulman S. Thromboprophylaxis in Patients with Acute Spinal Cord Injury: A Narrative Review. Semin Thromb Hemost. 2019; 45(2): 150-6. [DOI:10.1055/s-0039-1678720]
99. Latifi S, Koushki D, Norouzi Javidan A, Matin M, Sabour H. Changes of leptin concentration in plasma in patients with spinal cord injury: a meta-analysis. Spinal Cord. 2013; 51(10): 728-31. [DOI:10.1038/sc.2013.82]
100. Horiuchi M, Okita K. Arm-Cranking Exercise Training Reduces Plasminogen Activator Inhibitor 1 in People With Spinal Cord Injury. Arch Phys Med Rehabil. 2017; 98(11): 2174-80. [DOI:10.1016/j.apmr.2017.02.007]
101. Casili G, Impellizzeri D, Cordaro M, Esposito E, Cuzzocrea S. B-Cell Depletion with CD20 Antibodies as New Approach in the Treatment of Inflammatory and Immunological Events Associated with Spinal Cord Injury. Neurotherapeutics. 2016; 13(4): 880-94. [DOI:10.1007/s13311-016-0446-2]
102. Kwon BK, Bloom O, Wanner IB, Curt A, Schwab JM, Fawcett J, et al. Neurochemical biomarkers in spinal cord injury. Spinal Cord. 2019; 57(10): 819-31. [DOI:10.1038/s41393-019-0319-8]
103. Xu Y, Hu Y, Xu S, Liu F, Gao Y. Exosomal microRNAs as Potential Biomarkers and Therapeutic Agents for Acute Ischemic Stroke: New Expectations. Front Neurol. 2021; 12: 747380. [DOI:10.3389/fneur.2021.747380]
104. Liu X, Zhang Y, Wang Y, Qian T. Inflammatory Response to Spinal Cord Injury and Its Treatment. World Neurosurg. 2021: 155: 19-31. [DOI:10.1016/j.wneu.2021.07.148]
105. Kwon BK, Bloom O, Wanner I-B, Curt A, Schwab JM, Fawcett J, et al. Neurochemical biomarkers in spinal cord injury. Spinal Cord. 2019; 57(10): 819-31. [DOI:10.1038/s41393-019-0319-8]
106. Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell. 2023; 14(9): 635-52. [DOI:10.1093/procel/pwad003]
107. Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med. 2024; 13(14). [DOI:10.3390/jcm13144101]
108. Liu Z, Gao H, Man Y, Zhang X, Chen L, Yang M, et al. Serum Biomarkers in the Diagnosis and Prognosis of Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Journal of Neurorestoratology. 2025; 13: 100227. [DOI:10.1016/j.jnrt.2025.100227]
109. Coenen H, Somers V, Fraussen J. Peripheral immune reactions following human traumatic spinal cord injury: the interplay of immune activation and suppression. Front Immunol. 2024; 15: 1495801. [DOI:10.3389/fimmu.2024.1495801]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 51 queries by YEKTAWEB 4732