1. Shank CD, Walters BC, Hadley MN. Current topics in the management of acute traumatic spinal cord injury. Neurocritical Care. 2019; 30: 261-71. [ DOI:10.1007/s12028-018-0537-5] 2. Jazayeri SB, Ataeepour M, Rabiee H, Motevalian SA, Saadat S, Vaccaro AR, et al. Prevalence of spinal cord injury in Iran: a 3-source capture-recapture study. Neuroepidemiology. 2015; 45(1): 28-33. [ DOI:10.1159/000435785] 3. Hassanpourezatti M, Nikookar Z. Stem Cells and their Applications for the Treatment of Injuries to the Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2021; 9(3): 116-29. [ DOI:10.52547/shefa.9.3.116] 4. Abdolmaleki A, Taghizadeh Momen L, Asadi A, Wasman Smail S. The Application of 3D Bioprinting Technology in the Treatment of Spinal Cord Lesions. The Neuroscience Journal of Shefaye Khatam. 2023; 11(4): 79-93. [ DOI:10.61186/shefa.11.4.79] 5. Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nature Reviews Disease Primers. 2017; 3: 17018. [ DOI:10.1038/nrdp.2017.18] 6. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Frontiers in cellular neuroscience. 2016; 10: 98. [ DOI:10.3389/fncel.2016.00098] 7. Yaghoubi F, Vazir B, Hesaraki S, Omidi A, Hadjighassem M, Jafarian M. Investigating the Effect of Neuro-Motor Rehabilitation on Myelin Regeneration after Spinal Cord Injury Model in Rats. Shefaye Khatam. 2023; 11(4) :20-31. [ DOI:10.61186/shefa.11.4.20] 8. Sajadian A, Jafarian M, Khodaie B, Mohammad Sadeghi S, Ghaemi A. Reduction of Neuroinflammation in Epilepsy by Using Induced Pluripotent Stem (iPS) Cells-Derived Astrocytes. The Neuroscience Journal of Shefaye Khatam. 2014; 2(2): 56-64. [ DOI:10.18869/acadpub.shefa.2.2.56] 9. Peyvandi AA, Roozbahany NA, Peyvandi H, Abbaszadeh HA, Majdinasab N, Faridan M, et al. Critical role of SDF-1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma. Neural regeneration research. 2018; 13(1): 154. [ DOI:10.4103/1673-5374.224382] 10. Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2017; 79: 408-16. [ DOI:10.1016/j.pnpbp.2017.07.023] 11. Tran A P, Warren P M, Silver J.The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological Reviews. 2018; 98(2): 881-17. [ DOI:10.1152/physrev.00017.2017] 12. Zhang Z, Krebs CJ, Guth L. Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Experimental Neurology. 1997; 143: 141-52. [ DOI:10.1006/exnr.1996.6355] 13. Abdolahi S, Aligholi H, Shirian S. Cell Therapy Strategies in the Repair of Spinal Cord Injury: Pros and Cons. Shefaye Khatam. 2016; 4(1): 55-66. [ DOI:10.18869/acadpub.shefa.4.1.55] 14. Gashmardi N, Edalatmanesh M A. Cellular and Molecular Mechanisms of Mesenchymal Stem Cell Transplantation in Spinal Cord Injury. The Neuroscience Journal of Shefaye Khatam. 2017; 5(3): 51-61. [ DOI:10.18869/acadpub.shefa.5.3.51] 15. Raspa A, Pugliese R, Maleki M, Gelain F. Recent therapeutic approaches for spinal cord injury. Biotechnology and bioengineering. 2016; 113: 253-9. [ DOI:10.1002/bit.25689] 16. Blesch A, Lu P, Tuszynski MH. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain research bulletin. 2002; 57: 833-8. [ DOI:10.1016/S0361-9230(01)00774-2] 17. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nature neuroscience. 2017; 20: 637. [ DOI:10.1038/nn.4541] 18. Maldonado-Lasunción I, Verhaagen J, Oudega M. Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics. 2018; 15(3): 578-87. [ DOI:10.1007/s13311-018-0629-0] 19. Takahashi A, Nakajima H, Uchida K, Takeura N, Honjoh K, Watanabe S, et al. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury. Cell transplantation. 2018; 27: 1126-39. [ DOI:10.1177/0963689718780309] 20. Ruppert KA, Nguyen TT, Prabhakara KS, Furman NET, Srivastava AK, Harting MT, et al. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Scientific reports. 2018; 8: 480. [ DOI:10.1038/s41598-017-18867-w] 21. Ghiasi M, Pestehei S, Javadi S, Seyhoun S. The use of adult stem cells in the treatment of skin diseases. Journal of Dermatology and Cosmetic. 2024; 15(1) : 14-30 22. Ghiasi M, Mehdizadeh M, khatibshad L. Designing Nanofiber Multilayer Composite Scaffolds and Lyophilized Blood Growth Factors in the Process of Osteogenesis. Journal of Mazandaran University of Medical Sciences. 2022; 32(210): 1-12. 23. Pestehei S K, Ghiasi M, Bagheri N. Evaluation the Impressionability of Acellular Scaffolds in Presence of Different Combination of Umbilical Cord Blood Stem Cells and Platelet Rich Fibrin in Repair of Knee Defects in Rabbit (Novel Method with Xeno-Material Elements. Archives of Neuroscience. 2024; 11(4): e147989. [ DOI:10.5812/ans-147989] 24. Marques SA, Almeida FM, Fernandes AM, dos Santos Souza C, Cadilhe DV, Rehen SK, et al. Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury. Brain research. 2010; 1349: 115-28. [ DOI:10.1016/j.brainres.2010.06.028] 25. Abbaszadeh HA, Tiraihi T, Noori-Zadeh A, Delshad AR, Sadeghizade M, Taheri T. Human ciliary neurotrophic factor-overexpressing stable bone marrow stromal cells in the treatment of a rat model of traumatic spinal cord injury. Cytotherapy. 2015; 17(7): 912-21. [ DOI:10.1016/j.jcyt.2015.03.689] 26. Khoshsirat S, Abbaszadeh HA, Ahrabi B, Bahrami M, Abdollahi MA, Khoramgah MS, et al. Evaluation of the effect of BMSCs condition media and methylprednisolone in TGF-β expression and functional recovery after an acute spinal cord injury. Bratislavske lekarske listy. 2018; 119(11): 684-91. [ DOI:10.4149/BLL_2018_123] 27. Karimfar MH, Peyvandi A, Noorozian M, Ahmadi Roozbahani N, Mastery Farahani R, Khoramgah MS, et al. Repressing of SOX6 and SOX9 in situ chondrogenic differentiation of rat bone marrow stromal cells. Anatomical Sciences Journal. 2015; 12(2): 75-82. 28. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrology Dialysis Transplantation. 2012; 27: 3037-42. [ DOI:10.1093/ndt/gfs168] 29. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem cell research. 2010; 4: 214-22. [ DOI:10.1016/j.scr.2009.12.003] 30. Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem cells and development. 2013; 23: 741-54. [ DOI:10.1089/scd.2013.0396] 31. Tan SS, Yin Y, Lee T, Lai RC, Yeo RW, Zhang B, et al. Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. Journal of extracellular vesicles. 2013; 2(1): 22614. [ DOI:10.3402/jev.v2i0.22614] 32. Moradi H R, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. Shefaye Khatam. 2024; 12(2): 87-101 [ DOI:10.61186/shefa.12.2.87] 33. Mehdizadeh, M., Ghiasi, M., khatib shad, L. Development and Application of Mesenchymal Stem Cell-derived Exosomes in Cartilage Tissue Repair. Journal of Military Medicine. 2022; 24(5): 1319-1329. 34. Abbaszadeh H, Niknazar S, Darabi S, Ahmady Roozbahany N. Stem Cell Transplantation and Functional Recovery after Spinal Cord Injury: A Systematic Review and Meta-Analysis. Anatomy & Cell Biology. 2018; 51(3): 180-8. [ DOI:10.5115/acb.2018.51.3.180] 35. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy. 2011; 19: 1769-79. [ DOI:10.1038/mt.2011.164] 36. Lai RC, Yeo RWY, Tan KH, Lim SK. Exosomes for drug delivery-a novel application for the mesenchymal stem cell. Biotechnology advances. 2013; 31: 543-51. [ DOI:10.1016/j.biotechadv.2012.08.008] 37. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Molecular and Cellular Neuroscience. 2011; 46: 409-18. [ DOI:10.1016/j.mcn.2010.11.004] 38. Fauré J, Lachenal G, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, et al. Exosomes are released by cultured cortical neurones. Molecular and Cellular Neuroscience. 2006; 31: 642-8. [ DOI:10.1016/j.mcn.2005.12.003] 39. de Rivero Vaccari JP, Brand III F, Adamczak S, Lee SW, Perez‐Barcena J, Wang MY, et al. Exosome‐mediated inflammasome signaling after central nervous system injury. Journal of neurochemistry. 2016; 136: 39-48. [ DOI:10.1111/jnc.13036] 40. Saadati F, Mahdikia H, Abbaszadeh HA, Abdollahifar MA, Khoramgah MS, Shokri B. Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B 16 F 10 melanoma cancer cells treatment. Scientific reports. 2018; 8(1): 7689. [ DOI:10.1038/s41598-018-25990-9] 41. Krämer‐Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, et al. Oligodendrocytes secrete exosomes containing major myelin and stress‐protective proteins: Trophic support for axons? PROTEOMICS-Clinical Applications. 2007; 1: 1446-61. [ DOI:10.1002/prca.200700522] 42. Pegtel DM, Gould SJ. Exosomes. Annual Review of Biochemistry. 2019; 88: 487-514. [ DOI:10.1146/annurev-biochem-013118-111902] 43. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977. [ DOI:10.1126/science.aau6977] 44. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016; 164(6): 1226-32. [ DOI:10.1016/j.cell.2016.01.043] 45. Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Advanced Drug Delivery Reviews. 2022; 187: 114324. [ DOI:10.1016/j.addr.2022.114324] 46. Yang LT, Patel KD, Rathnam C, Thangam R, Hou YN, Kang H, et al. Harnessing the therapeutic potential of extracellular vesicles for biomedical applications using multifunctional magnetic nanomaterials. Small. 2022; 18(13): 2104783. [ DOI:10.1002/smll.202104783] 47. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences. 2018; 75(2): 193-208. [ DOI:10.1007/s00018-017-2595-9] 48. Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cellsInternational Journal of Nanomedicine. 2018; 13: 585-99. [ DOI:10.2147/IJN.S154458] 49. Ye Y, Zhang X, Xie F, Xu B, Xie P, Yang T, et al. An engineered exosome for delivering sgRNA: Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomaterials Science. 2020; 8(10): 2966-76. [ DOI:10.1039/D0BM00427H] 50. Mehdizadeh M, Ghiasi M, Khatib Shad L. Development and Application of Mesenchymal Stem Cell-derived Exosomes in Cartilage Tissue Repair. Journal of Military Medicine. 2022; 24(5): 1319-29. 51. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica. 2017; 38(6): 754-63. [ DOI:10.1038/aps.2017.12] 52. Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosomeinspired vesicles for targeted drug delivery. Pharmaceutics. 2018; 10(4): 218. [ DOI:10.3390/pharmaceutics10040218] 53. Peng H, Ji W, Zhao R, Yang J, Lu Z, Li Y, et al. Exosome: a significant nano-scale drug delivery carrier. Journal of Materials Chemistry B. 2020; 8(34): 7591-608. [ DOI:10.1039/D0TB01499K] 54. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Brazilian Journal of Medical and Biological Research. 2019; 52(12): e8735. [ DOI:10.1590/1414-431x20198735] 55. Li C, Li X, Zhao B, Wang C. Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury. Archives of Physiology and Biochemistry. 2020; 126(4): 369-75. [ DOI:10.1080/13813455.2019.1691601] 56. Jiang Z, Zhang J. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle. 2021; 20(10): 993-1009. [ DOI:10.1080/15384101.2021.1919825] 57. Pestehei SK, Ghiasi M, Emami-Razavi SH. An overview of future developments of exosomes in cell-free therapies: a review article. Tehran University of Medical Sciences Journal. 2023; 81(7): 486-94. 58. Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification and medical applications of exosomes. Journal of Controlled Release. 2019; 308: 119-29. [ DOI:10.1016/j.jconrel.2019.07.021] 59. Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: new regulators of reproductive development. Materials Today Bio. 2023; 19: 100608. [ DOI:10.1016/j.mtbio.2023.100608] 60. Lasser C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. Journal of Visualized Experiments. 2012; 59: e3037. [ DOI:10.3791/3037] 61. Zhao R, Zhao T, He Z, Cai R, Pang W. Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte. 2021; 10(1): 587-604. [ DOI:10.1080/21623945.2021.1983242] 62. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chemical Reviews. 2018; 118(4): 1917-50. [ DOI:10.1021/acs.chemrev.7b00534] 63. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, et al. Challenges and opportunities in exosome research-perspectives from biology, engineering, and cancer therapy. 2019; 3(1): 011503. [ DOI:10.1063/1.5087122] 64. Lai JJ, Chau ZL, Chen SY, Hill JJ, Korpany KV, Liang NW, et al. Exosome processing and characterization approaches for research and technology development. Advanced Science. 2022; 9(15): e2103222. [ DOI:10.1002/advs.202103222] 65. Sina AA, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJ, Trau M. Real time and label free profiling of clinically relevant exosomes. Scientific Reports. 2016; 6: 30460. [ DOI:10.1038/srep30460] 66. Sina AA, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Analytical and Bioanalytical Chemistry. 2019; 411(7): 1311-8. [ DOI:10.1007/s00216-019-01608-5] 67. Vaidyanathan R, Naghibosadat M, Rauf S, Korbie D, Carrascosa LG, Shiddiky MJ, et al. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Analytical Chemistry. 2014; 86(22): 11125-32. [ DOI:10.1021/ac502082b] 68. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduction and Targeted Therapy. 2020; 5(1): 144. [ DOI:10.1038/s41392-020-00258-9] 69. Marleau1AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine. 2012; 10: 134. [ DOI:10.1186/1479-5876-10-134] 70. Fu M, Gu J, Jiang P, Qian H, Xu W, Zhang X. Exosomes in gastric cancer: roles, mechanisms, and applications. Molecular Cancer. 2019; 18(1): 41. [ DOI:10.1186/s12943-019-1001-7] 71. Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infection, Genetics and Evolution. 2020; 85: 104422. [ DOI:10.1016/j.meegid.2020.104422] 72. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clinical and Developmental Immunology. 2011; 2011: 842849. [ DOI:10.1155/2011/842849] 73. Tovar-Camargo OA, Toden S, Goel A. Exosomal microRNA biomarkers: emerging frontiers in colorectal and other human cancers. Expert Review of Molecular Diagnostics. 2016; 16(5): 553-67. [ DOI:10.1586/14737159.2016.1156535] 74. Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, Temraz S. Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. International Journal of Molecular Sciences. 2020; 21(4): 1398. [ DOI:10.3390/ijms21041398] 75. Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Moller A. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. International Journal of Cancer. 2017; 141(3): 614-20. [ DOI:10.1002/ijc.30752] 76. Tian XP, Wang CY, Jin XH, Li M, Wang FW, Huang WJ, et al. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 2019; 9(7): 1965-79. [ DOI:10.7150/thno.30958] 77. Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Annals of Oncology. 2017; 28(4) : 741-7. [ DOI:10.1093/annonc/mdx004] 78. Huang J-H, Fu C-H, Xu Y, Yin X-M, Cao Y, Lin F-Y. Extracellular vesicles derived from epidural fat-mesenchymal stem cells attenuate NLRP3 inflammasome activation and improve functional recovery after spinal cord injury. Neurochemical Research. 2020; 45(4): 760-71. [ DOI:10.1007/s11064-019-02950-x] 79. Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021; 122: 306-24. [ DOI:10.1016/j.actbio.2020.12.046] 80. Gashmardi N, Edalatmanesh M A. Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury. Shefaye Khatam. 2019; 7(4): 89-105. [ DOI:10.29252/shefa.7.4.89] 81. Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Journal of Translational Medicine. 2017; 6(4): 1273-85. [ DOI:10.1002/sctm.16-0428] 82. Wang W, Liu J, Yang M, Qiu R, Li Y, Bian S, et al. Intravitreal injection of an exosome-associated adeno-associated viral vector enhances retinoschisin 1 gene transduction in the mouse retina. Human gene therapy. 2021; 32(13-14): 707-16. [ DOI:10.1089/hum.2020.328] 83. Moisseiev E, Anderson JD, Oltjen S, Goswami M, Zawadzki RJ, Nolta JA, et al. Protective effect of intravitreal administration of exosomes derived from mesenchymal stem cells on retinal ischemia. Current Eye Research. 2017; 42(10): 1358-67. [ DOI:10.1080/02713683.2017.1319491] 84. Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and therapeutic approaches for spinal cord injury. International Journal of Molecular Sciences. 2022; 23: 13833 [ DOI:10.3390/ijms232213833] 85. McDonald JW, Sadowsky C. Spinal-cord injury. Lancet. 2002; 359: 417-425. [ DOI:10.1016/S0140-6736(02)07603-1] 86. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001; 26(24 Suppl): S2-S12. [ DOI:10.1097/00007632-200112151-00002] 87. Young W. Secondary injury mechanisms in acute spinal cord injury. Journal of Emergency Medicine. 1993; 11(Suppl)1: 13-22. 88. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008; 25: E2. [ DOI:10.3171/FOC.2008.25.11.E2] 89. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology. 2015; 25: 364-372. [ DOI:10.1016/j.tcb.2015.01.004] 90. Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends in Cell Biology. 2023; 33: 667-681. [ DOI:10.1016/j.tcb.2023.01.002] 91. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367: eaau6977. [ DOI:10.1126/science.aau6977] 92. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Current Opinion in Cell Biology. 2014; 29: 116-125. [ DOI:10.1016/j.ceb.2014.05.004] 93. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science. 2013; 126(Pt 24): 5553-565. [ DOI:10.1242/jcs.128868] 94. Stuffers S, Sem Wegner C, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic. 2009; 10: 925-937. [ DOI:10.1111/j.1600-0854.2009.00920.x] 95. Van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Developmental Cell. 2011; 21: 708-721. [ DOI:10.1016/j.devcel.2011.08.019] 96. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology. 2019; 21: 9-17. [ DOI:10.1038/s41556-018-0250-9] 97. Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Science. 2020; 111: 3100-110. [ DOI:10.1111/cas.14563] 98. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell & Bioscience. 2019; 9: 19. [ DOI:10.1186/s13578-019-0282-2] 99. Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 2019; 54(Suppl 2): 789-792. [ DOI:10.1038/s41409-019-0616-z] 100. Heldring N, Mäger I, Wood MJ, Le Blanc K, Andaloussi SE. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Human Gene Therapy. 2015; 26: 506-517. [ DOI:10.1089/hum.2015.072] 101. Yang J-K, Zhou Q-Z, Chen M-K, Peng W, Qi T, Wang C-Y, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology 2017; 5: 1007-1015. [ DOI:10.1111/andr.12412] 102. Kim HS, Choi DY, Yun SJ, Choi S-Mi, Won Kang J, Woo Jung J, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Journal of Proteome Research. 2012; 11: 839-849. [ DOI:10.1021/pr200682z] 103. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-297. [ DOI:10.1016/S0092-8674(04)00045-5] 104. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics. 2008; 9: 102-114. [ DOI:10.1038/nrg2290] 105. Tüfekci KU, Meuwissen RL, Genç S. The role of microRNAs in biological processes. Methods in Molecular Biology. 2014; 1107: 15-31. [ DOI:10.1007/978-1-62703-748-8_2] 106. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology. 2009; 11: 228-234. [ DOI:10.1038/ncb0309-228] 107. Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. Journal Neuroinflammation. 2021; 18: 284. [ DOI:10.1186/s12974-021-02337-2] 108. Fan L, Dong J, He X, Zhang C, Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Human and Experimental Toxicology. 2021; 40: 1612-1623. [ DOI:10.1177/09603271211003311] 109. Zhang M, Wang L, Huang S, He X. Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. Journal of Molecular Histology. 2021; 52: 301-311. [ DOI:10.1007/s10735-020-09950-0] 110. Nie H, Jiang Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered. 2021; 12: 8157-172. [ DOI:10.1080/21655979.2021.1977562] 111. Sung SE, Seo MS, Kim YI, Kang KK, Choi JH, Lee S, et al. Human epidural AD-MSC exosomes improve function recovery after spinal cord injury in rats. Biomedicines. 2022; 10: 678. [ DOI:10.3390/biomedicines10030678] 112. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016165: 792-800. [ DOI:10.1016/j.cell.2016.03.046] 113. Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics. 2021; 11: 4436-4451. [ DOI:10.7150/thno.54004] 114. Noori L, Arabzadeh S, Mohamadi Y, et al. Intrathecal administration of the extracellular vesicles derived from human Wharton's jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neuroscience Research. 2021; 170: 87-98. [ DOI:10.1016/j.neures.2020.07.011] 115. Ginhoux F, Prinz M. Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol. 2015; 7: a020537. [ DOI:10.1101/cshperspect.a020537] 116. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain research. Developmental brain research. 1999; 117: 145-152. [ DOI:10.1016/S0165-3806(99)00113-3] 117. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014; 41: 21-35. [ DOI:10.1016/j.immuni.2014.06.013] 118. Zhou X, He X, Ren Y. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regeneration Research. 2014; 9: 1787-795. [ DOI:10.4103/1673-5374.143423] 119. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews Neurosciences. 2011; 12: 388-399. [ DOI:10.1038/nrn3053] 120. Javdani M, Barzegar-Bafrouei A. The Key Role of Macrophages and Monocytes in Spinal Cord Injury: Development of Novel Therapeutic Approaches. Shefaye Khatam. 2020; 8(4) : 90-102. [ DOI:10.29252/shefa.8.4.90] 121. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports. 2014; 6: 13. [ DOI:10.12703/P6-13] 122. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. Journal of Neuroscience. 2009; 29: 13435-13444. [ DOI:10.1523/JNEUROSCI.3257-09.2009] 123. Chang Q, Hao Y, Wang Y, Zhou Y, Zhuo H, Zhao G. Bone marrow mesenchymal stem cell-derived exosomal microRNA- 125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Research Bulletin. 2021; 170: 199-210. [ DOI:10.1016/j.brainresbull.2021.02.015] 124. Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Research & Therapy. 2020; 22: 75. [ DOI:10.1186/s13075-020-2146-x] 125. Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR- 216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. Journal of Neuroinflammation. 2020; 17: 47. [ DOI:10.1186/s12974-020-1726-7] 126. Sofroniew MV. Astrogliosis. Cold Spring Harb Perspect Biol. 2014; 7: a020420. [ DOI:10.1101/cshperspect.a020420] 127. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathologica. 2010; 119: 7-35. [ DOI:10.1007/s00401-009-0619-8] 128. ramazi S, arani F, safaei A, abbasi Z, heidari Z, Ghasemian nafchi H, et al. The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions. Shefaye Khatam. 2021; 9(2): 119-139. [ DOI:10.52547/shefa.9.2.119] 129. Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017; 46: 957-967. [ DOI:10.1016/j.immuni.2017.06.006] 130. Wang L, Pei S, Han L, et al. Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 subunit in spinal cord injury. Cellular Physiology and Biochemistry. 2018; 50: 1535-1559. [ DOI:10.1159/000494652] 131. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, et al. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. Journal of Neurotrauma. 2019; 36: 469-484. [ DOI:10.1089/neu.2018.5835] 132. Lai X, Wang Y, Wang X, Liu B, Rong L. miR-146a- 5p-modified hUCMSC-derived exosomes facilitate spinal cord function recovery by targeting neurotoxic astrocytes. Stem Cell Research & Therapy. 2022; 13: 487. [ DOI:10.1186/s13287-022-03116-3]
|