[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 8, Issue 2 (Spring 2020) ::
Shefaye Khatam 2020, 8(2): 107-118 Back to browse issues page
Pathogenic and Therapeutic Role of Micrornas in Glioblastoma Multiforme
Maliheh Babazadeh , Mohammad Reza Zolfaghary , Sadegh Shirian , Amir Ghaemi *
Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran , ghaem_amir@yahoo.com
Abstract:   (3186 Views)
Introduction: Glioblastoma multiforme (GBM) is a severe type of brain tumors with very poor prognosis and a median survival time of about 15 months. To identify new biomarkers and therapeutic approaches, novel methods are crucial to treat GBM, based on the biological and molecular nature of these tumors. Recently, microRNAs (miRNAs) have been extensively used with the aim of developing accurate molecular therapies, due to their emerging role in the regulation of cancer-related genes. miRNAs, a class of small non-coding RNA species, have vital roles across various biological processes, which may serve as diagnostic and prognostic tools in GBM. Conclusion: This review indicated that miRNAs signatures could be used for developing new molecular therapies to enhance the survival of GBM patients. On the other hand, miRNAs regulate a wide range of cellular functions, allowing them to modulate many pathways critical to GBM progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance.
Keywords: Glioblastoma, MicroRNAs, Cell Death
Full-Text [PDF 1053 kb]   (1320 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Ahir BK, Ozer H, Engelhard HH, Lakka SS. MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit Rev Oncol Hematol. 2017; 120: 22-33. [DOI:10.1016/j.critrevonc.2017.10.003]
2. Sathipati SY, Huang H-L, Ho S-Y. Estimating survival time of patients with glioblastoma multiforme and characterization of the identified microRNA signatures. BMC Genomics. 2016; 17(13): 1022. doi: 10.1186/s12864-016-3321-y. [DOI:10.1186/s12864-016-3321-y]
3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2): 215-33. [DOI:10.1016/j.cell.2009.01.002]
4. Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006; 150(2): 205-15. [DOI:10.5507/bp.2006.029]
5. Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016; 5(8): 1917-46. [DOI:10.1002/cam4.775]
6. Henriksen M, Johnsen KB, Andersen HH, Pilgaard L, Duroux M. MicroRNA expression signatures determine prognosis and survival in glioblastoma multiforme-a systematic overview. Mol Neurobiol. 2014; 50(3): 896-913. [DOI:10.1007/s12035-014-8668-y]
7. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016; 76(13): 3666-70. [DOI:10.1158/0008-5472.CAN-16-0359]
8. Qu Y, Zhang H, Sun W, Han Y, Li S, Qu Y, et al. Micro RNA‐155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor‐β receptor 2. Cancer Sci. 2018; 109(3): 618-28. [DOI:10.1111/cas.13472]
9. Zhu Y, Gu J, Li Y, Peng C, Shi M, Wang X, et al. MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes. Cancer Lett. 2018; 412: 59-68. [DOI:10.1016/j.canlet.2017.09.044]
10. Liu L, Ren W, Chen K. MiR-34a promotes apoptosis and inhibits autophagy by targeting HMGB1 in acute myeloid leukemia cells. Cell Physiol Biochem. 2017; 41(5): 1981-92. [DOI:10.1159/000475277]
11. Li GC, Cao XY, Li YN, Qiu YY, Li YN, Liu XJ, et al. MicroRNA‐374b inhibits cervical cancer cell proliferation and induces apoptosis through the p38/ERK signaling pathway by binding to JAM‐2. J Cell Physiol. 2018; 233(9): 7379-90. [DOI:10.1002/jcp.26574]
12. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019; 234(5): 5451-65. [DOI:10.1002/jcp.27486]
13. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010; 20(3): 539-50. [DOI:10.1111/j.1750-3639.2009.00328.x]
14. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C, et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol. 2010; 177(1): 29-38. [DOI:10.2353/ajpath.2010.090812]
15. Sun G, Cao Y, Shi L, Sun L, Wang Y, Chen C, et al. Overexpressed miRNA-137 inhibits human glioma cells growth by targeting Rac1. Cancer Biother Radiopharm. 2013; 28(4): 327-34. [DOI:10.1089/cbr.2012.1380]
16. Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupré I, et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PloS One. 2011; 6(5): e20600. [DOI:10.1371/journal.pone.0020600]
17. Schraivogel D, Weinmann L, Beier D, Tabatabai G, Eichner A, Zhu JY, et al. CAMTA1 is a novel tumour suppressor regulated by miR‐9/9* in glioblastoma stem cells. EMBO J. 2011; 30(20): 4309-22. [DOI:10.1038/emboj.2011.301]
18. Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, et al. The myc-mir-17∼ 92 axis blunts TGFβ signaling and production of multiple TGFβ-dependent antiangiogenic factors. Cancer Res. 2010; 70(20): 8233-46. [DOI:10.1158/0008-5472.CAN-10-2412]
19. Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene. 2010; 29(23): 3411-22. [DOI:10.1038/onc.2010.83]
20. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65(14): 6029-33. [DOI:10.1158/0008-5472.CAN-05-0137]
21. Ciafre S, Galardi S, Mangiola A, Ferracin M, Liu C-G, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005; 334(4): 1351-8. [DOI:10.1016/j.bbrc.2005.07.030]
22. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009; 23(11): 1327-37. [DOI:10.1101/gad.1777409]
23. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008; 6(1): 14. doi: 10.1186/1741-7015-6-14. [DOI:10.1186/1741-7015-6-14]
24. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA‐10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009; 125(6): 1407-13. [DOI:10.1002/ijc.24522]
25. Sun L, Yan W, Wang Y, Sun G, Luo H, Zhang J, et al. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res. 2011; 1389: 9-18. [DOI:10.1016/j.brainres.2011.03.013]
26. Rao SA, Santosh V, Somasundaram K. Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Modern Pathology. 2010; 23(10): 1404-17. [DOI:10.1038/modpathol.2010.135]
27. Wuchty S, Arjona D, Li A, Kotliarov Y, Walling J, Ahn S, et al. Prediction of associations between microRNAs and gene expression in glioma biology. PloS One. 2011; 6(2): e14681. [DOI:10.1371/journal.pone.0014681]
28. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA, et al. Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol. 2010; 12(5): 422-33. [DOI:10.1093/neuonc/nop061]
29. Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010; 90(2): 144-55. [DOI:10.1038/labinvest.2009.126]
30. Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E, et al. MiR‐195, miR‐196b, miR‐181c, miR‐21 expression levels and O‐6‐methylguanine‐DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011; 102(12): 2186-90. [DOI:10.1111/j.1349-7006.2011.02092.x]
31. Dong H, Luo L, Hong S, Siu H, Xiao Y, Jin L, et al. Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst Biol. 2010; 4(1): 163. doi: 10.1186/1752-0509-4-163. [DOI:10.1186/1752-0509-4-163]
32. Kwak H, Kim Y, Chun K, Woo Y, Park S, Jeong J, et al. Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene. 2011; 30(21): 2433-42. [DOI:10.1038/onc.2010.620]
33. Li Y, Li W, Yang Y, Lu Y, He C, Hu G, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 2009; 1286: 13-8. [DOI:10.1016/j.brainres.2009.06.053]
34. Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, et al. Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep. 2010; 24(1): 195-201. [DOI:10.3892/or_00000846]
35. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008; 68(19): 8164-72. [DOI:10.1158/0008-5472.CAN-08-1305]
36. Gaur AB, Holbeck SL, Colburn NH, Israel MA. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 2011; 13(6): 580-90. [DOI:10.1093/neuonc/nor033]
37. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008; 28(17): 5369-80. [DOI:10.1128/MCB.00479-08]
38. Li Y, Zhao S, Zhen Y, Li Q, Teng L, Asai A, et al. A miR-21 inhibitor enhances apoptosis and reduces G 2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol. 2011; 28(3): 209-14. [DOI:10.1007/s10014-011-0037-1]
39. Zhi F, Chen X, Wang S, Xia X, Shi Y, Guan W, et al. The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. Eur J Cancer. 2010; 46(9): 1640-9. [DOI:10.1016/j.ejca.2010.02.003]
40. Ren Y, Zhou X, Mei M, Yuan X-B, Han L, Wang G-X, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer. 2010; 10(1): 27. doi: 10.1186/1471-2407-10-27. [DOI:10.1186/1471-2407-10-27]
41. Ren Y, Kang C-S, Yuan X-B, Zhou X, Xu P, Han L, et al. Co-delivery of as-miR-21 and 5-FU by poly (amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 2010; 21(3): 303-14. [DOI:10.1163/156856209X415828]
42. Zhang C-Z, Zhang J-X, Zhang A-L, Shi Z-D, Han L, Jia Z-F, et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010; 9(1): 229. doi: 10.1186/1476-4598-9-229. [DOI:10.1186/1476-4598-9-229]
43. Chen L, Zhang J, Han L, Zhang A, Zhang C, Zheng Y, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 2012; 27(3): 854-60.
44. Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 2011; 10(1): 59. doi: 10.1186/1476-4598-10-59. [DOI:10.1186/1476-4598-10-59]
45. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, et al. Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res. 2011; 1390: 21-32. [DOI:10.1016/j.brainres.2011.03.034]
46. Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene. 2010; 29(23): 3411-22. [DOI:10.1038/onc.2010.83]
47. Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010; 29(9): 553-61. [DOI:10.1089/dna.2009.0978]
48. Li D, Chen P, Li X-Y, Zhang L-Y, Xiong W, Zhou M, et al. Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. OMICS. 2011; 15(10): 673-82. [DOI:10.1089/omi.2011.0064]
49. Schramedei K, Mörbt N, Pfeifer G, Läuter J, Rosolowski M, Tomm J, et al. MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene. 2011; 30(26): 2975-85. [DOI:10.1038/onc.2011.15]
50. Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, et al. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res. 2010; 16(16): 4289-97. [DOI:10.1158/1078-0432.CCR-10-0207]
51. Conti A, Aguennouz MH, La Torre D, Tomasello C, Cardali S, Angileri FF, et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol. 2009; 93(3): 325-32. [DOI:10.1007/s11060-009-9797-4]
52. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008; 321(5897): 1807-12. [DOI:10.1126/science.1164382]
53. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008; 68(10): 3566-72. [DOI:10.1158/0008-5472.CAN-07-6639]
54. WU D-g, Wang Y-y, Fan L-g, Hui L, Bin H, Sun L-h, et al. MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl). 2011; 124(17): 2616-21.
55. Li Y, Guessous F, Zhang Y, DiPierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009; 69(19): 7569-76. [DOI:10.1158/0008-5472.CAN-09-0529]
56. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 2010; 9(6): 1031-6. [DOI:10.4161/cc.9.6.10987]
57. Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010; 41(2): 67-74. [DOI:10.1016/j.arcmed.2010.02.007]
58. Silber J, Jacobsen A, Ozawa T, Harinath G, Pedraza A, Sander C, et al. miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PloS One. 2012; 7(3): e33844. [DOI:10.1371/journal.pone.0033844]
59. Zhang C, Han L, Zhang A, Yang W, Zhou X, Pu P, et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol. 2010; 36(6): 1503-12. [DOI:10.3892/ijo_00000637]
60. Vo DT, Qiao M, Smith AD, Burns SC, Brenner AJ, Penalva LO. The oncogenic RNA-binding protein Musashi1 is regulated by tumor suppressor miRNAs. RNA Biol. 2011; 8(5): 817-28. [DOI:10.4161/rna.8.5.16041]
61. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008; 68(22): 9125-30. [DOI:10.1158/0008-5472.CAN-08-2629]
62. Cui J, Zhao Y, Sethi P, Li Y, Mahta A, Culicchia F, et al. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neurooncol. 2010; 98(3): 297-304. [DOI:10.1007/s11060-009-0077-0]
63. Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med (Berl). 2009; 87(1): 43-51. [DOI:10.1007/s00109-008-0403-6]
64. Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas J, Gill R, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012; 31(15): 1884. [DOI:10.1038/onc.2011.380]
65. Shi Z-m, Wang J, Yan Z, You Y-p, Li C-y, Qian X, et al. MiR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1. PloS One. 2012; 7(3): e32709. [DOI:10.1371/journal.pone.0032709]
66. Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Molecular Cancer. 2011; 10(1): 124. [DOI:10.1186/1476-4598-10-124]
67. Kefas B, Comeau L, Floyd D, Seleverstov O, Godlewski J, Schmittgen T, et al. diPierro CG, Li Y, Chiocca EA, Lee J, Fine H, Abounader R, Lawler S, Purow B. The neuronal microRNA miR-326 acts in a feedback loop with notch and has ther‐apeutic potential against brain tumors. J Neurosci. 2009; 29: 15161-8. [DOI:10.1523/JNEUROSCI.4966-09.2009]
68. Wang X-F, Shi Z-M, Wang X-R, Cao L, Wang Y-Y, Zhang J-X, et al. MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. J Cancer Res Clin Oncol. 2012; 138(4): 573-84. [DOI:10.1007/s00432-011-1114-x]
69. Ng WL, Yan D, Zhang X, Mo Y-Y, Wang Y. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 2010; 9(11): 1170-5. [DOI:10.1016/j.dnarep.2010.08.007]
70. Katakowski M, Zheng X, Jiang F, Rogers T, Szalad A, Chopp M. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 2010; 28(10): 1024-3. [DOI:10.3109/07357907.2010.512596]
71. Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010; 12(11): 1102-12. [DOI:10.1093/neuonc/noq080]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babazadeh M, Zolfaghary M R, Shirian S, Ghaemi A. Pathogenic and Therapeutic Role of Micrornas in Glioblastoma Multiforme. Shefaye Khatam 2020; 8 (2) :107-118
URL: http://shefayekhatam.ir/article-1-2086-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (Spring 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4645