[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 9, Issue 1 (Winter 2020) ::
Shefaye Khatam 2020, 9(1): 166-188 Back to browse issues page
A review on the models and evaluating tests of the spinal cord injury in rats
Ghazal Rahmani , Hamze Mirshekari , Fahime Zavvari , ّFariba Karimzade *
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran , karimzade.f@iums.ac.ir
Abstract:   (2543 Views)
Introduction: Functional improvement is the major goal of therapeutic intervention in animal models of different diseases. To test therapeutic approaches of spinal cord injury (SCI), it is essential to produce an appropriate SCI animal model. In this model, the pathophysiological processes and histological alterations should be similar to humans. Most of the mechanisms for drug effect in SCI in human and animal spinal cord seems to be similar. The main types of experimental models of SCI with various applications have been reviewed. In the next step, behavioral tests to assess spinal cord injuries were mentioned. Conclusion: Choosing an appropriate SCI model is crucial for the accuracy of investigations. The validity of any behavioral test depends on the reliability, authenticity, and universality. In this article, besides the illustration of different models and evaluating tests of spinal injury, selection criteria, as well as advantages and disadvantages, are discussed.
Keywords: Spinal Cord Injuries, Behavior Rating Scale, Rats
Full-Text [PDF 2709 kb]   (2248 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Kjell J, Olson L, Abrams M. Improved recovery from spinal cord injury in rats with chronic parvovirus serotype-1a infection. Spinal Cord. 2016; 54(7): 517. [DOI:10.1038/sc.2015.208]
2. Talac R, Friedman J, Moore M, Lu L, Jabbari E, Windebank AJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004; 25(9): 1505-10. [DOI:10.1016/S0142-9612(03)00497-6]
3. Ebrahimzadeh MH, Soltani-Moghaddas SH, Birjandinejad A, Omidi-Kashani F, Bozorgnia S. Quality of life among veterans with chronic spinal cord injury and related variables. Archives of trauma research. 2014; 3(2). [DOI:10.5812/atr.17917]
4. Derakhshanrad N, Yekaninejad M, Vosoughi F, Fazel FS, Saberi H. Epidemiological study of traumatic spinal cord injuries: experience from a specialized spine center in Iran. Spinal Cord. 2016; 54(10): 901-7. [DOI:10.1038/sc.2016.10]
5. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, et al. A novel role of phospholipase A2 in mediating spinal cord secondary injury. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2006; 59(4): 606-19. [DOI:10.1002/ana.20798]
6. Lee D-H, Lee JK. Animal models of axon regeneration after spinal cord injury. Neurosci Bull. 2013; 29(4): 436-44. [DOI:10.1007/s12264-013-1365-4]
7. Rivlin A, Tator C. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol. 1978; 10(1): 38-43.
8. Dolan EJ, Tator CH, Endrenyi L. The value of decompression for acute experimental spinal cord compression injury. J Neurosurg. 1980; 53(6): 749-55. [DOI:10.3171/jns.1980.53.6.0749]
9. Su Y, Lin C, Lee K, Tsai T, Wu S, Hwang S, et al. A modified compression model of spinal cord injury in rats: functional assessment and the expression of nitric oxide synthases. Spinal Cord. 2015; 53(6): 432-5. [DOI:10.1038/sc.2014.245]
10. Cheriyan T, Ryan D, Weinreb J, Cheriyan J, Paul J, Lafage V, et al. Spinal cord injury models: a review. Spinal Cord. 2014; 52(8): 588-95. [DOI:10.1038/sc.2014.91]
11. Guha A, Tator C, Endrenyi L, Piper I. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Spinal Cord. 1987; 25(4): 324-39. [DOI:10.1038/sc.1987.61]
12. Šedý J, Urdzíková L, Likavčanová K, Hejčl A, Burian M, Jendelová P, et al. Low concentration of isoflurane promotes the development of neurogenic pulmonary edema in spinal cord injured rats. J Neurotrauma. 2007; 24(9): 1487-501. [DOI:10.1089/neu.2006.0252]
13. Tarlov I, Klinger H, Vitale S. Spinal cord compression studies: I. experimental techniques to produce acute and gradual compression. AMA Archives of Neurology & Psychiatry. 1953; 70(6): 813-9. [DOI:10.1001/archneurpsyc.1953.02320360128010]
14. Sun G-d, Chen Y, Zhou Z-g, Yang S-x, Zhong C, Li Z-z. A progressive compression model of thoracic spinal cord injury in mice: function assessment and pathological changes in spinal cord. Neural regeneration research. 2017; 12(8): 1365. [DOI:10.4103/1673-5374.213693]
15. Onifer SM, Rabchevsky AG, Scheff SW. Rat models of traumatic spinal cord injury to assess motor recovery. ILAR journal. 2007; 48(4): 385-95. [DOI:10.1093/ilar.48.4.385]
16. McDonough A, Monterrubio A, Ariza J, Martínez-Cerdeño V. Calibrated forceps model of spinal cord compression injury. JoVE (J VIS EXP). 2015; (98): e52318. [DOI:10.3791/52318]
17. Borges PA, Cristante AF, Barros-Filho TEPd, Natalino RJM, Santos GBd, Marcon RM. Standardization of a spinal cord lesion model and neurologic evaluation using mice. Clinics. 2018; 73. [DOI:10.6061/clinics/2018/e293]
18. Young W. Spinal cord contusion models. Prog Brain Res. 137: Elsevier; 2002. p. 231-55. [DOI:10.1016/S0079-6123(02)37019-5]
19. Lane MA, White TE, Coutts MA, Jones AL, Sandhu MS, Bloom DC, et al. Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J Comp Neurol. 2008; 511(5): 692-709. [DOI:10.1002/cne.21864]
20. Van Gorp S, Leerink M, Nguyen S, Platoshyn O, Marsala M, Joosten E. Translation of the rat thoracic contusion model; part 2-forward versus backward locomotion testing. Spinal Cord. 2014; 52(7): 529. [DOI:10.1038/sc.2014.73]
21. Young W. Mascis spinal cord contusion model. Animal models of acute neurological injuries. Springer, Berlin; 2009. [DOI:10.1007/978-1-60327-185-1_35]
22. Soblosky JS, Song J-H, Dinh DH. Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects. Behav Brain Res. 2001; 119(1): 1-13. [DOI:10.1016/S0166-4328(00)00328-4]
23. Schrimsher GW, Reier PJ. Forelimb motor performance following cervical spinal cord contusion injury in the rat. Exp Neurol. 1992; 117(3): 287-98. [DOI:10.1016/0014-4886(92)90138-G]
24. Sharif-Alhoseini M, Khormali M, Rezaei M, Safdarian M, Hajighadery A, Khalatbari M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord. 2017; 55(8): 714. [DOI:10.1038/sc.2016.187]
25. Shah PK, Gerasimenko Y, Shyu A, Lavrov I, Zhong H, Roy RR, et al. Variability in step training enhances locomotor recovery after a spinal cord injury. Eur J Neurosci. 2012; 36(1): 2054-62. [DOI:10.1111/j.1460-9568.2012.08106.x]
26. Steward O, Willenberg R. Rodent spinal cord injury models for studies of axon regeneration. Exp Neurol. 2017; 287: 374-83. [DOI:10.1016/j.expneurol.2016.06.029]
27. Savas S, Delibas N, Savas C, Sütçü R, Cindas A. Pentoxifylline reduces biochemical markers of ischemia-reperfusion induced spinal cord injury in rabbits. Spinal Cord. 2002; 40(5): 224. [DOI:10.1038/sj.sc.3101281]
28. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma. 2001; 18(2): 187-201. [DOI:10.1089/08977150150502613]
29. Battistuzzo CR, Callister RJ, Callister R, Galea MP. A systematic review of exercise training to promote locomotor recovery in animal models of spinal cord injury. J Neurotrauma. 2012; 29(8): 1600-13. [DOI:10.1089/neu.2011.2199]
30. Daniel Pearse D, Eduardo Marcillo A, Oudega M, Paul Lynch M, McGhee Wood P, Bartlett Bunge M. Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J Neurotrauma. 2004; 21(9): 1223-39. [DOI:10.1089/neu.2004.21.1223]
31. Ahmed RU, Alam M, Zheng Y-P. Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon. 2019; 5(3): e01324. [DOI:10.1016/j.heliyon.2019.e01324]
32. Hao J-X, Xu X-J, Aldskogius H, Seiger Å, Wiesenfeld-Hallin Z. Allodynia-like effects in rat after ischaemic spinal cord injury photochemically induced by laser irradiation. Pain. 1991; 45(2): 175-85. [DOI:10.1016/0304-3959(91)90186-2]
33. Piao MS, Lee J-K, Jang J-W, Kim S-H, Kim H-S. A mouse model of photochemically induced spinal cord injury. J. Korean Neurosurg. Soc. 2009; 46(5): 479. [DOI:10.3340/jkns.2009.46.5.479]
34. Nakae A, Nakai K, Yano K, Hosokawa K, Shibata M, Mashimo T. The animal model of spinal cord injury as an experimental pain model. Biomed Res. Int. 2011; 2011. [DOI:10.1155/2011/939023]
35. Liu D, Xu G-Y, Pan E, McAdoo D. Neurotoxicity of glutamate at the concentration released upon spinal cord injury. Neuroscience. 1999; 93(4): 1383-9. [DOI:10.1016/S0306-4522(99)00278-X]
36. Liu D, Bao F, Prough DS, DeWitt DS. Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin. J Neurotrauma. 2005; 22(10): 1123-33. [DOI:10.1089/neu.2005.22.1123]
37. Lafci G, Gedik HS, Korkmaz K, Erdem H, Cicek OF, Nacar OA, et al. Efficacy of iloprost and montelukast combination on spinal cord ischemia/reperfusion injury in a rat model. J Cardiothorac Surg. 2013; 8(1): 64. [DOI:10.1186/1749-8090-8-64]
38. Muir GD, Webb AA. Assessment of behavioural recovery following spinal cord injury in rats. Eur J Neurosci. 2000; 12(9): 3079-86. [DOI:10.1046/j.1460-9568.2000.00205.x]
39. Whishaw IQ, Gorny B, Sarna J. Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res. 1998; 93(1-2): 167-83. [DOI:10.1016/S0166-4328(97)00152-6]
40. Šedý J, Urdzíková L, Jendelová P, Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev. 2008; 32(3): 550-80. [DOI:10.1016/j.neubiorev.2007.10.001]
41. Tasch U, Moubarak P, Tang W, Zhu L, Lovering R, Roche J, et al., editors. An Instrument That Simultaneously Measures Spatiotemporal Gait Parameters and Ground Reaction Forces of Locomoting Rats. ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis; 2008: American Society of Mechanical Engineers Digital Collection. [DOI:10.1115/ESDA2008-59085]
42. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2001; 2(4): 263. [DOI:10.1038/35067570]
43. Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, et al. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol. 2005; 196(2): 352-64. [DOI:10.1016/j.expneurol.2005.08.011]
44. Piecharka DM, Kleim JA, Whishaw IQ. Limits on recovery in the corticospinal tract of the rat: partial lesions impair skilled reaching and the topographic representation of the forelimb in motor cortex. Brain Res Bull. 2005; 66(3): 203-11. [DOI:10.1016/j.brainresbull.2005.04.013]
45. Anderson KD, Gunawan A, Steward O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Exp Neurol. 2005; 194(1): 161-74. [DOI:10.1016/j.expneurol.2005.02.006]
46. De Luca A, Tinsley J, Aartsma-Rus A, van Putten M, Nagaraju K, de La Porte S, et al. Use of grip strength meter to assess the limb strength of mdx mice. SOP DMD_M. 2008; 2(001).
47. Grip strength meter: Nanjing Biomedical Research Institute of Nanjing University; [cited 2018]. http://www.nbri-nju.com/en-us/service-view-Grip-strength.
48. Alam M, Garcia-Alias G, Shah PK, Gerasimenko Y, Zhong H, Roy RR, et al. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. J Neurosci Methods. 2015; 247: 50-7. [DOI:10.1016/j.jneumeth.2015.03.012]
49. Livingston-Thomas JM, Tasker RA. Animal models of post-ischemic forced use rehabilitation: methods, considerations, and limitations. Exp Transl Stroke Med. 2013; 5(1): 2. [DOI:10.1186/2040-7378-5-2]
50. Starkey ML, Barritt AW, Yip PK, Davies M, Hamers FP, McMahon SB, et al. Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp Neurol. 2005; 195(2): 524-39. [DOI:10.1016/j.expneurol.2005.06.017]
51. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc. 2009; 4(10): 1560. [DOI:10.1038/nprot.2009.125]
52. Bouet V, Freret T. A master key to assess stroke consequences across species: The Adhesive Removal Test. Advances in the Preclinical Study of Ischemic Stroke. 2012: 47. [DOI:10.5772/32327]
53. Singh A, Murray M, Houle JD. A training paradigm to enhance motor recovery in contused rats: effects of staircase training. Neurorehabil Neural Repair. 2011; 25(1): 24-34. [DOI:10.1177/1545968310378510]
54. Staircase pellet reaching test devise KF Technology life science tools: http://www.kftechnology.it/newsite/images/djcatalog/staircase_rats_mice.jpg.
55. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003; 463(1-3): 3-33. [DOI:10.1016/S0014-2999(03)01272-X]
56. Mills CD, Grady JJ, Hulsebosch CE. Changes in exploratory behavior as a measure of chronic central pain following spinal cord injury. J Neurotrauma. 2001; 18(10): 1091-105. [DOI:10.1089/08977150152693773]
57. Paré WP. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav. 1994; 55(3): 433-9. [DOI:10.1016/0031-9384(94)90097-3]
58. open feild test https://dyrefaciliteter.au.dk/institut-for-biomedicin/phenotyping/behavioural-phenotyping/: Aarhus Universitet.
59. Koopmans GC, Deumens R, Honig WM, Hamers FP, Steinbusch HW, Joosten EA. The assessment of locomotor function in spinal cord injured rats: the importance of objective analysis of coordination. J Neurotrauma. 2005; 22(2): 214-25. [DOI:10.1089/neu.2005.22.214]
60. Zavvari F, Karimzadeh F. A Methodological Review of Development and Assessment of Behavioral Models of Depression in Rats. Neurosci. J. Shefaye Khatam. 2015; 3(4): 151-60. [DOI:10.18869/acadpub.shefa.3.4.151]
61. Forced swimming test https://en.wikipedia.org/wiki/Behavioural_despair_test 2019.
62. Smith RR, Burke DA, Baldini AD, Shum-Siu A, Baltzley R, Bunger M, et al. The Louisville Swim Scale: a novel assessment of hindlimb function following spinal cord injury in adult rats. J Neurotrauma. 2006; 23(11): 1654-70. [DOI:10.1089/neu.2006.23.1654]
63. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 2000; 39(5): 777-87. [DOI:10.1016/S0028-3908(00)00005-8]
64. Chao O, Pum M, Li J-S, Huston J. The grid-walking test: assessment of sensorimotor deficits after moderate or severe dopamine depletion by 6-hydroxydopamine lesions in the dorsal striatum and medial forebrain bundle. Neuroscience. 2012; 202: 318-25. [DOI:10.1016/j.neuroscience.2011.11.016]
65. Sharp KG, Flanagan LA, Yee KM, Steward O. A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Exp Neurol. 2012; 233(2): 625-44. [DOI:10.1016/j.expneurol.2010.12.020]
66. Semler J, Wellmann K, Wirth F, Stein G, Angelova S, Ashrafi M, et al. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores. J Neurotrauma. 2011; 28(7): 1247-58. [DOI:10.1089/neu.2010.1737]
67. Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000; 25(2): 425-35. [DOI:10.1016/S0896-6273(00)80905-8]
68. Thallmair M, Metz GA, Z'Graggen WJ, Raineteau O, Kartje GL, Schwab ME. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci. 1998; 1(2): 124-31. [DOI:10.1038/373]
69. Vogel W. Physiological disposition of 5-methoxytryptamine and the rope climbing performance of rats. Psychopharmacologia. 1969; 15(2): 88-95. [DOI:10.1007/BF00407040]
70. Mann A, Chesselet M-F. Techniques for motor assessment in rodents. Mov Disord: Elsevier; 2015. p. 139-57. [DOI:10.1016/B978-0-12-405195-9.00008-1]
71. Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore-and hindlimb stepping, placing, and co-ordination. J Neurosci Methods. 2002; 115(2): 169-79. [DOI:10.1016/S0165-0270(02)00012-2]
72. Bolton DA, Arthur D, Ballermann M, Misiaszek JE, Fouad K. Task specific adaptations in rat locomotion: runway versus horizontal ladder. Behav Brain Res. 2006; 168(2): 272-9. [DOI:10.1016/j.bbr.2005.11.017]
73. Cummings BJ, Engesser-Cesar C, Cadena G, Anderson AJ. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res. 2007; 177(2): 232-41. [DOI:10.1016/j.bbr.2006.11.042]
74. Peixinho-Pena LF, Fernandes J, de Almeida AA, Gomes FGN, Cassilhas R, Venancio DP, et al. A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav. 2012; 25(3): 323-8. [DOI:10.1016/j.yebeh.2012.08.011]
75. Lindsey AE, LoVerso RL, Tovar CA, Hill CE, Beattie MS, Bresnahan JC. An analysis of changes in sensory thresholds to mild tactile and cold stimuli after experimental spinal cord injury in the rat. Neurorehabil Neural Repair. 2000; 14(4): 287-300. [DOI:10.1177/154596830001400405]
76. Christensen MD, Everhart AW, Pickelman JT, Hulsebosch CE. Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain. 1996; 68(1): 97-107. [DOI:10.1016/S0304-3959(96)03224-1]
77. Crown ED, Ye Z, Johnson KM, Xu G-Y, McAdoo DJ, Hulsebosch CE. Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neurol. 2006; 199(2): 397-407. [DOI:10.1016/j.expneurol.2006.01.003]
78. Kingery WS. A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain. 1997; 73(2): 123-39. [DOI:10.1016/S0304-3959(97)00049-3]
79. Vrinten DH, Hamers FF. 'CatWalk'automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain. 2003; 102(1-2): 203-9. [DOI:10.1016/s0304-3959(02)00382-2]
80. Morais SVd, Czeczko NG, Malafaia O, Ribas Filho JM, Garcia JBS, Miguel MT, et al. Osteoarthritis model induced by intra-articular monosodium iodoacetate in rats knee. Acta Cir Bras. 2016; 31(11): 765-73. [DOI:10.1590/s0102-865020160110000010]
81. Touch Test Sensory Kit https://www.leicabiosystems.com/research/neuroscience/surgical-instrumentation/surgical-accessories/products/touch-test-sensory-kit/: Leica Biosystems.
82. Finnerup NB, Sorensen F, Johannesen IL. Intraveneous lidocaine relieves spinal cord injury pain. Anesthesiology. 2005; 102(5): 1023-30. [DOI:10.1097/00000542-200505000-00023]
83. Yadlapalli JSK, Dogra N, Walbaum AW, Prather PL, Crooks PA, Dobretsov M. Pinprick hypo-and hyperalgesia in diabetic rats: Can diet content affect experimental outcome? Neurosci Lett. 2018; 673: 24-7. [DOI:10.1016/j.neulet.2018.02.054]
84. Dai Y, Kondo E, Fukuoka T, Tokunaga A, Miki K, Noguchi K. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain. J. Pain. 2001; 2(3): 151-9. [DOI:10.1054/jpai.2001.19964]
85. Asthana P, Zhang N, Kumar G, Chine VB, Singh KK, Mak YL, et al. Pacific ciguatoxin induces excitotoxicity and neurodegeneration in the motor cortex via caspase 3 activation: implication for irreversible motor deficit. Mol Neurobiol. 2018; 55(8): 6769-87. [DOI:10.1007/s12035-018-0875-5]
86. Scheid T, Moraes MS, Henriques TP, Riffel APK, Belló-Klein A, Poser GLV, et al. Effects of methanol fraction from leaves of Schinus terebinthifolius raddi on nociception and spinal-cord oxidative biomarkers in rats with neuropathic pain. Evid Based Complement Alternat Med. 2018; 2018. [DOI:10.1155/2018/5783412]
87. Carter M, Shieh JC. Guide to research techniques in neuroscience: Academic Press; 2015.
88. Rossi HL, Neubert JK. Effects of hot and cold stimulus combinations on the thermal preference of rats. Behav Brain Res. 2009; 203(2): 240-6. [DOI:10.1016/j.bbr.2009.05.009]
89. Nozadze I, Tsiklauri N, Gurtskaia G, Tsagareli MG. Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats. Behav Pharmacol. 2016; 27(1): 29-36. [DOI:10.1097/FBP.0000000000000176]
90. Hotplate Analgesia Meter https://www.somatco.com/hotplateforanimal.htm: Somatco.
91. Allchorne AJ, Broom DC, Woolf CJ. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats. Mol Pain: 2005; 1: 1744-8069-1-36. [DOI:10.1186/1744-8069-1-36]
92. Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, et al. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain. 2011; 152(5): 1165-72. [DOI:10.1016/j.pain.2011.01.049]
93. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017; 10: 284. [DOI:10.3389/fnmol.2017.00284]
94. M'dahoma S, Barthélemy S, Tromilin C, Jeanson T, Viguier F, Michot B, et al. Respective pharmacological features of neuropathic-like pain evoked by intrathecal BDNF versus sciatic nerve ligation in rats. Eur Neuropsychopharmacol. 2015; 25(11): 2118-30. [DOI:10.1016/j.euroneuro.2015.07.026]
95. Xie J, Yoon YW, Yom SS, Chung JM. Norepinephrine rekindles mechanical allodynia in sympathectomized neuropathic rat. Analgesia. 1995; 1(2): 107-13. [DOI:10.3727/107156995819564310]
96. M'Dahoma S, Bourgoin S, Kayser V, Barthélémy S, Chevarin C, Chali F, et al. Spinal cord transection-induced allodynia in rats-behavioral, physiopathological and pharmacological characterization. PLoS One. 2014; 9(7). [DOI:10.1371/journal.pone.0102027]
97. Finnerup NB, Johannesen I, Fuglsang‐Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003; 126(1): 57-70. [DOI:10.1093/brain/awg007]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmani G, Mirshekari H, Zavvari F, karimzade ّ. A review on the models and evaluating tests of the spinal cord injury in rats. Shefaye Khatam 2020; 9 (1) :166-188
URL: http://shefayekhatam.ir/article-1-2101-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Winter 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4652