1. Sussman S, Sussman AN. Considering the definition of addiction. International journal of environmental research and public health. 2011; 8(10): 4025-38. [ DOI:10.3390/ijerph8104025] 2. Tiffany ST. Consideration of a comprehensive animal model of addiction: the limitations of modeling a counterfeit condition. Psychopharmacology. 2014; 231(19): 3919-20. [ DOI:10.1007/s00213-014-3625-z] 3. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry. 2016; 3(8): 760-73. [ DOI:10.1016/S2215-0366(16)00104-8] 4. Koob GF. Negative reinforcement in drug addiction: the darkness within. Current opinion in neurobiology. 2013; 23(4): 559-63. [ DOI:10.1016/j.conb.2013.03.011] 5. Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology. 2014; 39(2): 254-62. [ DOI:10.1038/npp.2013.261] 6. Edwards S, Koob GF. Escalation of drug self-administration as a hallmark of persistent addiction liability. Behavioural pharmacology. 2013; 24. [ DOI:10.1097/FBP.0b013e3283644d15] 7. Platt DM, Carey G, Spealman RD. Models of Neurological Disease (Substance Abuse): Self‐Administration in Monkeys. Current protocols in pharmacology. 2012; 56(1): 10.5. 1-.5. 7. [ DOI:10.1002/0471141755.ph1005s56] 8. Smith MA, Fronk GE, Abel JM, Lacy RT, Bills SE, Lynch WJ. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats. Psychopharmacology. 2018; 235(4): 1245-55. [ DOI:10.1007/s00213-018-4840-9] 9. Smith III RT. Naloxone and Ethanol Addiction Reinforcement. 2019. 10. Guo L-k, Wang Z-y, Lu G-y, Wu N, Dong G-m, Ma C-m, et al. Inhibition of naltrexone on relapse in methamphetamine self-administration and conditioned place preference in rats. European Journal of Pharmacology. 2019; 865: 172671. [ DOI:10.1016/j.ejphar.2019.172671] 11. Bergman J, Roof RA, Furman CA, Conroy JL, Mello NK, Sibley DR, et al. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors. International Journal of Neuropsychopharmacology. 2013; 16(2): 445-58. [ DOI:10.1017/S1461145712000661] 12. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Nader SH, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Social Neuroscience: Psychology Press; 2013. p. 243-52. 13. Juarez-Portilla C, Kim R, Robotham M, Tariq M, Pitter M, LeSauter J, et al. Voluntary inhalation of methamphetamine: a novel strategy for studying intake non-invasively. Psychopharmacology. 2017; 234(5): 739-47. [ DOI:10.1007/s00213-016-4510-8] 14. Rafaiee R, Ahmadiankia N, Mousavi SA, Rezaeian L, Niroumand Sarvandani M, Shekari A, et al. Inhalant self-administration of methamphetamine: the most similar model to human methamphetamine addiction. Iranian Journal of Psychiatry and Behavioral Sciences. 2019; 13(3). [ DOI:10.5812/ijpbs.90561] 15. Quijano Cardé NA, De Biasi M. Behavioral characterization of withdrawal following chronic voluntary ethanol consumption via intermittent two‐bottle choice points to different susceptibility categories. Alcoholism: Clinical and Experimental Research. 2022. [ DOI:10.1111/acer.14785] 16. Griffin WC, 3rd. Alcohol dependence and free-choice drinking in mice. Alcohol (Fayetteville, NY). 2014; 48(3): 287-93. [ DOI:10.1016/j.alcohol.2013.11.006] 17. Vendruscolo LF, Roberts AJ. Operant alcohol self-administration in dependent rats: focus on the vapor model. Alcohol. 2014; 48(3): 277-86. [ DOI:10.1016/j.alcohol.2013.08.006] 18. Ye T, Pozos H, Phillips TJ, Izquierdo A. Long-term effects of exposure to methamphetamine in adolescent rats. Drug and alcohol dependence. 2014; 138: 17-23. [ DOI:10.1016/j.drugalcdep.2014.02.021] 19. Yoon SS, Yun J, Lee BH, Kim HY, Yang CH. Acupuncture Modulates Intracranial Self-Stimulation of the Medial Forebrain Bundle in Rats. International Journal of Molecular Sciences. 2021; 22(14): 7519. [ DOI:10.3390/ijms22147519] 20. Markou A, Koob GF. Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiology & behavior. 1992; 51(1): 111-9. [ DOI:10.1016/0031-9384(92)90211-J] 21. Vlachou S, Markou A. Intracranial self-stimulation. Animal models of drug addiction: Springer; 2011. P. 3-56. [ DOI:10.1007/978-1-60761-934-5_1] 22. Bauer C, Banks M, Blough B, Negus S. Use of intracranial self‐stimulation to evaluate abuse‐related and abuse‐limiting effects of monoamine releasers in rats. British journal of pharmacology. 2013; 168(4): 850-62. [ DOI:10.1111/j.1476-5381.2012.02214.x] 23. Negus SS, Moerke MJ. Determinants of opioid abuse potential: Insights using intracranial self-stimulation. Peptides. 2019; 112: 23-31. [ DOI:10.1016/j.peptides.2018.10.007] 24. Napier TC, Herrold AA, De Wit H. Using conditioned place preference to identify relapse prevention medications. Neuroscience & Biobehavioral Reviews. 2013; 37(9): 2081-6. [ DOI:10.1016/j.neubiorev.2013.05.002] 25. McKendrick G, Graziane NM. Drug-induced conditioned place preference and its practical use in substance use disorder research. Frontiers in behavioral neuroscience. 2020; 14: 173. [ DOI:10.3389/fnbeh.2020.582147] 26. Cunningham CL, Gremel CM, Groblewski PA. Drug-induced conditioned place preference and aversion in mice. Nature Protocols. 2006; 1(4): 1662-70. [ DOI:10.1038/nprot.2006.279] 27. Cunningham CL, Clemans JM, Fidler TL. Injection timing determines whether intragastric ethanol produces conditioned place preference or aversion in mice. Pharmacology Biochemistry and Behavior. 2002; 72(3): 659-68. [ DOI:10.1016/S0091-3057(02)00734-7] 28. Seo D, Sinha R. The neurobiology of alcohol craving and relapse. Handbook of clinical neurology. 2014; 125: 355-68. [ DOI:10.1016/B978-0-444-62619-6.00021-5] 29. Spanagel R. Animal models of addiction. Dialogues in clinical neuroscience. 2017; 19(3): 247-58. [ DOI:10.31887/DCNS.2017.19.3/rspanagel] 30. Emmett-Oglesby M, Mathis D, Moon R, Lal H. Animal models of drug withdrawal symptoms. Psychopharmacology. 1990; 101(3): 292-309. [ DOI:10.1007/BF02244046] 31. Holtz NA, Radke AK, Zlebnik NE, Harris AC, Carroll ME. Intracranial self-stimulation reward thresholds during morphine withdrawal in rats bred for high (HiS) and low (LoS) saccharin intake. Brain research. 2015; 1602: 119-26. [ DOI:10.1016/j.brainres.2015.01.004] 32. Kenny PJ, Markou A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. Journal of Neuroscience. 2005; 25(26): 6208-12. [ DOI:10.1523/JNEUROSCI.4785-04.2005] 33. Huston JP, de Souza Silva MA, Topic B, Müller CP. What's conditioned in conditioned place preference? Trends in Pharmacological Sciences. 2013; 34(3): 162-6. [ DOI:10.1016/j.tips.2013.01.004] 34. Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorphine and a CRF1 Antagonist Block the Acquisition of Opiate Withdrawal-Induced Conditioned Place Aversion in Rats. Neuropsychopharmacology. 2005; 30(1): 90-8. [ DOI:10.1038/sj.npp.1300487] 35. Cunningham CL. Genetic relationships between ethanol-induced conditioned place aversion and other ethanol phenotypes in 15 inbred mouse strains. Brain sciences. 2019; 9(8): 209. [ DOI:10.3390/brainsci9080209] 36. Dannenhoffer CA, Spear LP. Age differences in conditioned place preferences and taste aversions to nicotine. Developmental Psychobiology. 2016; 58(5): 660-6. [ DOI:10.1002/dev.21400] 37. Jang C-G, Whitfield T, Schulteis G, Koob GF, Wee S. A dysphoric-like state during early withdrawal from extended access to methamphetamine self-administration in rats. Psychopharmacology. 2013; 225(3): 753-63. [ DOI:10.1007/s00213-012-2864-0] 38. Bigdeli I, Asia MN-H, Miladi-Gorji H, Fadaei A. The spatial learning and memory performance in methamphetamine-sensitized and withdrawn rats. Iranian journal of basic medical sciences. 2015; 18(3): 234. 39. Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, et al. Ethanol withdrawal drives anxiety-related behaviors by reducing M-type potassium channel activity in the lateral habenula. Neuropsychopharmacology. 2017; 42(9): 1813-24. [ DOI:10.1038/npp.2017.68] 40. Miladi-Gorji H, Fadaei A, Bigdeli I. Anxiety assessment in methamphetamine-sensitized and withdrawn rats: immediate and delayed effects. Iranian journal of psychiatry. 2015; 10(3): 150. 41. Schank JR, Goldstein AL, Rowe KE, King CE, Marusich JA, Wiley JL, et al. The kappa opioid receptor antagonist JDTic attenuates alcohol seeking and withdrawal anxiety. Addiction biology. 2012; 17(3): 634-47. [ DOI:10.1111/j.1369-1600.2012.00455.x] 42. Kumar J, Hapidin H, Bee Y-TG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behavioral and Brain Functions. 2013; 9(1): 1-13. [ DOI:10.1186/1744-9081-9-43] 43. Aujla H, Cannarsa R, Romualdi P, Ciccocioppo R, Martin‐Fardon R, Weiss F. Modification of anxiety‐like behaviors by nociceptin/orphanin FQ (N/OFQ) and time‐dependent changes in N/OFQ‐NOP gene expression following ethanol withdrawal. Addiction biology. 2013; 18(3): 467-79. [ DOI:10.1111/j.1369-1600.2012.00466.x] 44. Fucich EA, Morilak DA. Shock-probe defensive burying test to measure active versus passive coping style in response to an aversive stimulus in rats. Bio-protocol. 2018; 8(17). [ DOI:10.21769/BioProtoc.2998] 45. Kraeuter A-K, Guest PC, Sarnyai Z. The elevated plus maze test for measuring anxiety-like behavior in rodents. Pre-clinical models: Springer; 2019. p. 69-74. [ DOI:10.1007/978-1-4939-8994-2_4] 46. Mohseni F, Behnam SG, Rafaiee R. A Review of the historical evolutionary process of dry and water maze tests in rodents. Basic and Clinical Neuroscience. 2020; 11(4): 389. [ DOI:10.32598/bcn.11.4.1425.1] 47. Golden SA, Jin M, Shaham Y. Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. Journal of neuroscience. 2019; 39(21): 3996-4008. [ DOI:10.1523/JNEUROSCI.0151-19.2019] 48. Marchant NJ, Li X, Shaham Y. Recent developments in animal models of drug relapse. Current opinion in neurobiology. 2013; 23(4): 675-83. [ DOI:10.1016/j.conb.2013.01.003] 49. Shahveisi K, Abdoli N, Farnia V, Khazaie H, Hosseini M, Ghazvini H, et al. REM sleep deprivation before extinction or reinstatement alters methamphetamine reward memory via D1-like dopamine receptors. Pharmacology Biochemistry and Behavior. 2022: 173319. [ DOI:10.1016/j.pbb.2021.173319] 50. Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Progress in brain research. 2016; 224: 25-52. [ DOI:10.1016/bs.pbr.2015.08.004] 51. Martin-Fardon R, Weiss F. Modeling relapse in animals. Behavioral Neurobiology of Alcohol Addiction. 2012: 403-32. [ DOI:10.1007/978-3-642-28720-6_202] 52. Pina MM, Williams R. Alcohol cues, craving, and relapse: Insights from animal models. Recent advances in drug addiction research and clinical applications. 2016; 1: 13. [ DOI:10.5772/63105] 53. Crombag HS, Bossert JM, Koya E, Shaham Y. Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1507): 3233-43. [ DOI:10.1098/rstb.2008.0090] 54. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013; 77(5): 867-72. [ DOI:10.1016/j.neuron.2013.01.005] 55. Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nature Reviews Neuroscience. 2020; 21(11): 625-43. [ DOI:10.1038/s41583-020-0378-z] 56. Yoon SS, Yang EJ, Lee BH, Jang EY, Kim HY, Choi S-M, et al. Effects of acupuncture on stress-induced relapse to cocaine-seeking in rats. Psychopharmacology. 2012; 222(2): 303-11. [ DOI:10.1007/s00213-012-2683-3] 57. Vengeliene V, Bilbao A, Spanagel R. The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol. 2014; 48(3): 313-20. [ DOI:10.1016/j.alcohol.2014.03.002] 58. Broos N, van Mourik Y, Schetters D, De Vries TJ, Pattij T. Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking. Psychopharmacology. 2017; 234(22): 3343-51. [ DOI:10.1007/s00213-017-4711-9] 59. Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019; 44(3): 465-77. [ DOI:10.1038/s41386-018-0234-2]
|