[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 11, Issue 1 (Winter 2022) ::
Shefaye Khatam 2022, 11(1): 69-104 Back to browse issues page
Transcranial Electrical Stimulation (tES): History, Theoretical Foundations and Applications
Abed Mahdavi * , Farzaneh Ahmadi , Ensieh Haj Abbas Tabrizi , Hoda Gharaian , Behzad Rigi Koote , Valireza Imaninasab , Saeed Azadbakht
Faculty of Psychology and Educational Sciences, University of Tehran, Tehran, Iran , abed_mahdavi@yahoo.com
Abstract:   (1216 Views)
Introduction: Transcranial electrical stimulation (tES) is a non-invasive brain stimulation technique that can produce temporary changes in the excitability of cortical areas by applying a weak electrical current to the skull. The specialists’ tendency to use tES as a complementary or alternative tool for the treatment of psychiatric and neurological disorders has grown significantly in the last decade. This research has explained the nature of electrical stimulation of the brain, the stimulating devices, its history, underlying physiological mechanisms, and their applications in the treatment of neurological and psychiatric disorders. It also has taken a coherent look at the effects of cognitive training along with tES in the treatment of psychiatric patients. Conclusion: In the field of the effectiveness of tES intervention on mood disorders, anxiety, attention deficit-hyperactivity disorder, autism, obsessive-compulsive disorder, and schizophrenia, research conducted and showed that this treatment method is effective in improving the cognitive performance, moderating the negative emotions, and reducing the symptoms of individuals’ disease. Based on this, along with psychotherapy and medical treatment, tES can be used as a non-invasive treatment to help patients with psychiatric problems.
Keywords: Transcranial Direct Current Stimulation, Cognitive Training, Emotional Regulation
Full-Text [PDF 2182 kb]   (1576 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Psycology
References
1. Nitsche MA, & Paulus W. Transcranial direct current stimulation - update 2011. Restorative Neurology and Neuroscience, 2011; 29, 463-492. [DOI:10.3233/RNN-2011-0618]
2. Kuo MF, Nitsche MA. Effects of Transcranial Electrical Stimulation on Cognition. Clinical EEG and Neuroscience. 2012; 43(3):192-199. [DOI:10.1177/1550059412444975]
3. Summers JJ, Kang N, & Cauraugh JH. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews. 2015; 25, 42-54. [DOI:10.1016/j.arr.2015.11.004]
4. Xu Y, Qiu Z, Zhu J, Liu J, Wu J, Tao J, & Chen L. The modulation effect of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment: A systematic review and meta- analysis of randomized controlled trials 11 medical and health sciences 1103 clinical sciences 11 Medica. BMC Neuroscience. 2019; 20, 2. [DOI:10.1186/s12868-018-0484-2]
5. Elmasry J, Loo C, & Martin D.M. A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative Neurology and Neuroscience. 2015; 33, 263-278. [DOI:10.3233/RNN-140473]
6. Mancuso LE, Ilieva IP, Hamilton RH, & Farah MJ. Does transcranial direct current stimulation improve healthy working memory? A meta-analytic review. Journal of Cognitive Neuroscience. 2016; 28, 1063-1089. [DOI:10.1162/jocn_a_00956]
7. Nilsson J, Lebedev AV, Rydström A, & Lövdén M. Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science. 2017; 28, 907-920. [DOI:10.4324/9781315425856-28]
8. Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation. 2011; 21, 602-617. [DOI:10.1080/09602011.2011.557292]
9. Terney D, Chaieb L, Moliadze V, Antal A, & Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. Journal of Neuroscience. 2008; 28, 14147-14155. [DOI:10.1523/JNEUROSCI.4248-08.2008]
10. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-i nvasive brain stimulation tools. Clinical Neurophysiology. 2016; 127, 1031-1048. [DOI:10.1016/j.clinph.2015.11.012]
11. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med. 1946; 20:112-37.
12. Finger S. Origins of neurosciences. A history of explorations into brain function. New York, NY: Oxford University Press, First Edition. 1994.
13. Brazier MAB. The emergence of electrophysiology as an aid to neurology. In: Aminoff MJL, editor. Electrodiagnosis in clinical neurology. London: Churchill Livingstone Inc.; 1980. First Edition 3. [DOI:10.1016/B978-0-443-06647-4.50006-9]
14. Finger S, & Piccolino M. The shocking history of electric fishes: from ancient epochs to the birth of modern neurophysiology. New York, NY: Oxford University Press. 2011. [DOI:10.1093/acprof:oso/9780195366723.001.0001]
15. Debru A. The power of torpedo fish as a pathological model to the understanding of nervous transmission in Antiquity. Colupte Rendus Biologies R Seances Comptes Rendus Biologies. 2006; 329:298-302. [DOI:10.1016/j.crvi.2006.03.001]
16. Scribonii L. Compositiones medicae. Ioannes Rhodius recensuit, notis illustravit, lexicon Scribonianum adjecit. Patavii. Typis Pauli Frambotti Bibliopolae. 1655.
17. Maggioni F, Mainardi F, Dainese F, Campagnaro A, Zanchin G. Terapie per la cefalea in Scribonio Largo. Neurol Sci. 2005; 26: S431-3.
18. Zago S, Priori A, Ferrucci R, Lorusso L. Historical Aspects of Transcranial Electric Stimulation. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-33967-2_1 [DOI:10. 1007/978-3-319-33967-2-1.]
19. Pedacii Dioscoridis A. De materia medica libri sex [J. Ruellio interprete], Innumeris locis ab Andrea Matthiolo emendati. Apud [et per] Balthazarem Arnolletum. 1553.
20. Stillings D. A survey of the history of electrical stimulation for pain to 1900. Med Instrum. 1975; 9:255-9.
21. McWhirter L, Carson A, & Stone J. The body electric: a long view of electrical therapy for functional neurological disorders. Brain. 2015; 138:1113-20. [DOI:10.1093/brain/awv009]
22. Kadosh RC, & Elliott P. Neuroscience: Brain stimulation has a long history. Nature. 2013; 500: 529. [DOI:10.1038/500529d]
23. Elliott P. Electricity and the brain: an historical evaluation. In: Kadosh RC, editor. The stimulated brain: Cognitive enhancement using non-invasive brain stimulation. London: Academic Press. 2014.
24. Licht S. History of electrotherapy. 3rd ed. Baltimore, MD: Williams & Wilkins. 1983.
25. Le Roy C. Oul'on rend compte de quelques tentatives que l'on a faites pour guerir plusieurs maladies par l'electricite. Memoires de Mathematique et de Physique tires des registres de cette Academie Histoire de l'Academie Royale des Sci avec les. 1755; 60: 87-95.
26. Lovett R. The subtil medium prov'd: or, that wonderful power of nature, so long ago conjectur'd by the most ancient and remarkable philosophers, which they call'd sometimes æther, but oftener elementary fire, verify'd. shewing, that all the distinguishing and essential qualities ascrib'd to æther by them, and the most eminent modern philosophers, are to be found in electrical fi re, and that too in the utmost degree of perfection. giving an account not only of the progress and several gradations of electricity J. Hinton, in Newgate-Street, W. Sandby, in Fleet Street, and R. Lovett, at Worcester. 1756; 20.
27. Stainbrook E. The use of electricity in psychiatry treatment during the nineteenth century. Bull Hist Med. 1948; 22: 156-77.
28. Cavallo T. A complete treatise of electricity in theory and practice: with original experiments. London: Printed for Edward and Charles Dilly. 1777.
29. Cavallo T. An essay on the theory and practice of medical electricity. London: Printed for the author. 1780.
30. Finger S, & Zaromb F. Benjamin Franklin and shockinduced amnesia. Am Psychol. 2006; 61: 240-8. [DOI:10.1037/0003-066X.61.3.240]
31. Galvani L. De viribus electricitatis in motu musculari Commentarius cum Joannis Aldini dissertatione et notis. Accesserunt epistolaead animalis electricitatis theoriam pertinentes. Mutinae, apund Societatem typographicam. 1792. [DOI:10.5479/sil.324681.39088000932442]
32. Piccolino M. Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci. 1997; 20:443-8. [DOI:10.1016/S0166-2236(97)01101-6]
33. Benassi E. Spunti di elettropatologia e di elettroterapia nell'opera di Luigi Galvani. Atti Mem Accad Stor. 1942; 8, 116-25.
34. Benassi E. Qualche documento sulla pratica delle cure elettriche agli albori della galvanoterapia. Atti Mem Accad Stor. 1950; 16, 92-101.
35. Bourguignon A. La de'couverte par Aldini (1804) des effets the'rapeutiquesde l'e'lectrochoc sur la me'lancolie. Paris: Masson. 1964.
36. Parent, A. Giovanni Aldini: from animal electricity to human brain stimulation. Can J Neurol Sci. 2004; 31: 576-84. [DOI:10.1017/S0317167100003851]
37. Aldini, G. Essai théorique et expérimental sur le Galvanisme. De Fournier Fils Paris. 1804.
38. Lolas F. Brain polarization: behavioural and therapeutic effects. Biol Psychiatry. 1977; 12: 37-47. [DOI:10.1159/000117584]
39. Augustin FL. Vom Galvanism. Berlin. 1801.
40. Bischoff C. Commentatio de Usu galvanismi. Jena. 1801.
41. Grappengiesser C. Observations and experiments, made with the view of employing galvanism for the cure of certain diseases. Lond Med Phys J. 1802; 41:250-9.
42. Charcot JM. Phénomènes produits par l'application sur la voûte du crane du courant galvanique, pendant la période léthargique de l'hypnotisme chez les hystériques. Prog Med. 1882; 10(20-21):63-4.
43. Babinski J. Surun cas de mélanconie guéri à la suite immédiate d'un accès provoqué de vertige voltaique. Soc Neurol, 7: mai. 1903.
44. Matteucci C. Note sur un phénomène très curieux produit sur un malade affecté de paralysie, par un courant électrique très faible. Ann Méd Psychol. 1843; 2: 128.
45. Engelskjön C. Die ungleichartige therapeutische Wirkungsweise der beiden elektrischen Stromesarten und die elektrodiagnostische Gesichtsfelduntersuchung. (Eine schematische Uebersicht). Arch Psychiatr Nervenkr. 1884; 15: 136-139. [DOI:10.1007/BF02054320]
46. Arndt R. Die electricität in der psychiatrie. Arch Psichiatr Nervenkr. 1870; 2: 259-337. [DOI:10.1007/BF02046640]
47. Arndt R. Zur Electrotherapie der psychischen Krankheiten. Z Allz Psychiatr. 1878; 34: 483-574.
48. Steinberg H. Transcranial direct current stimulation (tDCS) has a history reaching back to the 19th century. Psychol Med. 2013; 43: 669-71. [DOI:10.1017/S0033291712002929]
49. Ardnt R. Electricity. In: Tuke DH, editors. Dictionary of psychological medicine. London: J & A Churchill; 1892.
50. Tigges W. Behandlung der Psychosen mit Electricität. II. Specielles. Allgeimeines. Z Allg Psychiatr. 1885; 41: 477-525.
51. Leduc S. Production de sommeil et anesthésie generale et locale par courant intermittent de bas voltage. Arch Electron Med. 1902; 10: 617-21.
52. Appell CP. Effect of electrosleep: review of research. Goteborg Psychol Rep. 1972; 2:1-24. [DOI:10.1037/e460972004-001]
53. Tatu L, Bogousslavsky J, Moulin T, Chopard JL. The 'torpillage' neurologists of World War I: electric therapy to send hysterics back to the front. Neurology. 2010; 75: 279-83. [DOI:10.1212/WNL.0b013e3181e8e6fd]
54. Cerletti U, & Bini L. L'Elettroschok. Arch Gen Neurol Psichiatr Psicoanal. 1938; 19: 226.
55. Delmas-Marsalet P. Èlectro-choc et thérapeutiques nouvelles en neuro-psychiatrie. Paris Èditeurs: J.-B. Baillière et Fils. Hauefeuille. 1946.
56. Pulver SE. The first electroconvulsive treatment given in the United States. Am J Psychiatry. 1961; 117: 845-6. [DOI:10.1176/ajp.117.9.845]
57. Passione R. Italian psychiatry in an international context: Ugo Cerletti and the case of electroshock. Hist Psychiatry. 2004; 15: 83-104. [DOI:10.1177/0957154X04039347]
58. Gilman SL. Electrotherapy and mental illness: then and now. Hist Psychiatry. 2008; 19: 339-57. [DOI:10.1177/0957154X07082566]
59. Terzuolo CA, & Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci U.S.A. 1956; 42: 687-94. [DOI:10.1073/pnas.42.9.687]
60. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal aactivity. Exp Neurol. 1962; 5: 436-52. [DOI:10.1016/0014-4886(62)90056-0]
61. Purpura DP, & McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965; 28: 166-85. [DOI:10.1152/jn.1965.28.1.166]
62. Lippold OC, & Redfearn JW. Mental changes resulting from the passage of small direct current through the human brain. Br J Psychiatry. 1964; 110: 768-72. [DOI:10.1192/bjp.110.469.768]
63. Redfearn JW, Lippold OC, Costain R. A preliminary account of the clinical effects of polarizing the brain in certain paychiatric disorders. Br J Psychiatry. 1964; 110: 773-85. [DOI:10.1192/bjp.110.469.773]
64. Herjanic M, & Moss-Herjanic B. Clinical report on a new therapeutic technique: polarization. Can Psychiatr Assoc J, 1967; 12: 423-4. [DOI:10.1177/070674376701200411]
65. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003; 114: 589-95. [DOI:10.1016/S1388-2457(02)00437-6]
66. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998; 9: 2257-60. [DOI:10.1097/00001756-199807130-00020]
67. Coffman BA, Clark VP, & Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014; 15: 895-908. [DOI:10.1016/j.neuroimage.2013.07.083]
68. Miniussi C, Harris JA, & Ruzzoli M. Modelling non- invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013; 37: 1702-12. [DOI:10.1016/j.neubiorev.2013.06.014]
69. Meron D, Hedger N, Garner M, Baldwin DS. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of effi cacy and tolerability. Neurosci Biobehav Rev. 2015; 57: 46-62. [DOI:10.1016/j.neubiorev.2015.07.012]
70. O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2014; 4: CD 003208. [DOI:10.1002/14651858.CD008208.pub3]
71. San-Juan D, Morales-Quezada L, Orozco Garduño AJ, Alonso-Vanegas M, González-Aragón MF, Espinoza López DA, & et al. Transcranial direct current stimulation in epilepsy. Brain Stimul. 2015; 8: 455-64. [DOI:10.1016/j.brs.2015.01.001]
72. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014; 15: 3345-69. [DOI:10.1113/jphysiol.2013.270280]
73. Tortella G, Casati R, Aparicio LV, Mantovani A, Senço N, D'Urso G, & et al. Transcranial direct current stimulation in psychiatric disorders. World J Psychiatry. 2015; 5: 88-102. [DOI:10.5498/wjp.v5.i1.88]
74. Shin YI, Foerster Á, Nitsche MA. Transcranial direct current stimulation (tDCS) - application in neuropsychology. Neuropsychologia. 2015; 69: 154-75. [DOI:10.1016/j.neuropsychologia.2015.02.002]
75. Utz KS, Dimova V, Oppenländer K, Kerkhoff G. Electrifi ed minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology - a review of current data and future implications. Neuropsychologia. 2010; 48: 2789-810. [DOI:10.1016/j.neuropsychologia.2010.06.002]
76. Kang N, Summers JJ, Cauraugh JH. Transcranial direct current stimulation facilitates motor learning post-stroke: A systematicreview and meta-analysis. J Neurol Neurosurg Psychiatry. 2016; 87:345-55. [DOI:10.1136/jnnp-2015-311242]
77. Tremblay S, Lepage JF, Latulipe-Loiselle A, Fregni F, Pascual-Leone A, & Théoret H. The uncertain outcome of prefrontal tDCS. Brain Stimulation. 2014; 7, 773-783. [DOI:10.1016/j.brs.2014.10.003]
78. Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014; 37: 742-53. [DOI:10.1016/j.tins.2014.08.003]
79. DaSilva AF, Volz MS, Bikson M, & Fregni F. Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments. 2011. https://doi. org/10.3791/2744. [DOI:10.3791/2744-v]
80. Nitsche MA, & Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology. 2000; 527, 633-639. [DOI:10.1111/j.1469-7793.2000.t01-1-00633.x]
81. Nitsche MA, & Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001; 57, 1899-1901. [DOI:10.1212/WNL.57.10.1899]
82. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, & Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 2003; 114, 600-604. [DOI:10.1016/S1388-2457(02)00412-1]
83. Moreno-Duarte I, Gebodh N, Schestatsky P, Guleyupoglu B, Reato D, Bikson M & Fregni F. Transcranial electrical stimulation: Transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS). In R. C. Kadosh (Ed.), The stimulated brain: Cognitive enhancement using non- invasive brain stimulation (2014, pp. 35-59). London, UK: Academic Press. [DOI:10.1016/B978-0-12-404704-4.00002-8]
84. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, & Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation. 2008; 1, 97-105. [DOI:10.1016/j.brs.2007.10.001]
85. Moliadze V, Antal A, & Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. Journal of Physiology. 2010; 588, 4891-4904. [DOI:10.1113/jphysiol.2010.196998]
86. Chaieb L, Antal A, & Paulus W. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restorative Neurology and Neuroscience. 2011; 29, 167-175. [DOI:10.3233/RNN-2011-0589]
87. Wach C, Krause V, Moliadze V, Paulus W, Schnitzler A, & Pollok B. Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behavioural Brain Research. 2013; 241, 1-6. [DOI:10.1016/j.bbr.2012.11.038]
88. Hoy KE, Bailey N, Arnold S, Windsor K, John J, Daskalakis ZJ, & Fitzgerald PB. The effect of γ-tACS on working memory performance in healthy controls. Brain and Cognition. 2015; 101, 51-56. [DOI:10.1016/j.bandc.2015.11.002]
89. Paulus W, Antal A, & Nitsche MA. Physiological basis and methodological aspects of transcranial electric stimulation (tDCS, tACS, and tRNS). In C. Miniussi, W. Paulus, & P. M. 2013.
90. Tavakoli AV, & Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience. 2017; 11, 1-10. [DOI:10.3389/fncel.2017.00214]
91. Chaieb L, Kovacs G, Cziraki C, Greenlee M, Paulus W, & Antal A. Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Experimental Brain Research. 2009; 198, 439-444. [DOI:10.1007/s00221-009-1938-7]
92. Romanska A, Rezlescu C, Susilo T, Duchaine B, & Banissy MJ. High-frequency transcranial random noise stimulation enhances perception of facial identity. Cerebral Cortex. 2015; 25, 4334-4340. [DOI:10.1093/cercor/bhv016]
93. Ambrus GG, Paulus W, & Antal A. Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology. 2010; 121, 1908-1914. [DOI:10.1016/j.clinph.2010.04.020]
94. Vasquez A, Malavera A, Doruk D, Morales-Quezada L, Carvalho S, Leite J, & Fregni F. Duration Dependent Effects of Transcranial Pulsed Current Stimulation (tPCS) Indexed by Electroencephalography. Neuromodulation: Technology at the Neural Interface. 2016; 19(7), 679-688. [DOI:10.1111/ner.12457]
95. Jensen BR, Malling AS, Schmidt SI, Meyer M, Morberg BM, & Wermuth L. Long-term treatment with transcranial pulsed electromagnetic fields improves movement speed and elevates cerebrospinal erythropoietin in Parkinson's disease. PLoS ONE. 2021; 16, e0248800. [DOI:10.1371/journal.pone.0248800]
96. Alon G, Yungher DA, Shulman LM, & Rogers MW. Safety and immediate effect of noninvasive transcranial pulsed current stimulation on gait and balance in Parkinson disease. Neurorehabilitation and neural repair. 2012; 26(9), 1089-1095. [DOI:10.1177/1545968312448233]
97. Ruhnau P, Rufener KS, Heinze HJ, & Zaehle T. Sailing in a sea of disbelief: In vivo measurements of transcranial electric stimulation in human subcortical structures. Brain stimulation. 2018; 11(1), 241-243. [DOI:10.1016/j.brs.2017.09.015]
98. Morales-Quezada L, Cosmo C, Carvalho S, Leite J, Castillo-Saavedra L, Rozisky JR, Fregni F. Cognitive effects and autonomic responses to transcranial pulsed current stimulation. Exp. Brain Res. 2014; 233, 701-709. [DOI:10.1007/s00221-014-4147-y]
99. Miniussi C, Harris JA, & Ruzzoli M. Modelling non- invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013; 37: 1702-12. [DOI:10.1016/j.neubiorev.2013.06.014]
100. Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, & Fregni F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study. NeuroImage. 2013; 65, 280-287. [DOI:10.1016/j.neuroimage.2012.09.062]
101. Saavedra LC, Morales-Quezada L, Doruk D, Rozinsky J, Coutinho L, Faria P, Perissinotti I, Wang Q, & Fregni F. QEEG indexed frontal connectivity effects of transcranial pulsed current stimulation (tPCS): A sham-controlled mechanistic trial. Neuroscience Letters. 2014; 577, 61-65. [DOI:10.1016/j.neulet.2014.06.021]
102. Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, Morales-Quezada L, Bender A, Laureys S, Thibaut A, Fregni F. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci. 2022; 24, 12(4):429. [DOI:10.3390/brainsci12040429]
103. Ambrus GG, Amado C, Krohn L, Kovács G. TMS of the occipital face area modulates cross-domain identity priming. Brain Struct Funct. 2019; 224(1):149-157. [DOI:10.1007/s00429-018-1768-0]
104. Borun S, Fooladchang M, Yousefi F, Jokar B. The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Adolescents' Moral Decision Making and Moral Behavior. Qom Univ Med Sci J. 2021; 15 (6): 434-443. [DOI:10.32598/qums.15.6.2402.1]
105. Ensafi E, Atadokht A, Mikaeili N, Narimani M, Rostami R. The effectiveness of non-invasive treatments on obsessive- compulsive disorder: A meta-analysis. Journal of Psychological Sciences. 2019, 18(75(; 297-306.
106. Rigi Kooteh B, Mahdavi A, Rigi A, Borhani T, Hashemzahi Z, Seyednejad M et al. The Effectiveness of Transcranial Direct Current Electrical Stimulation on Reducing Craving: A Meta-Analytic Study. Shefaye Khatam. 2021; 10 (1): 99-110. [DOI:10.52547/shefa.10.1.99]
107. Thams F, Külzow N, Flöel A, & Antonenko D. Modulation of network centrality andgray matter microstructure using multi-session brain stimulation and memory training. Human Brain Mapping. 2022; 1-11. [DOI:10.1002/hbm.25857]
108. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalography and clinical neurophysiology. 1998; 108(1), 1-16. [DOI:10.1016/S0168-5597(97)00096-8]
109. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic stimulation: motor evoked potentials. Electroenceph Clin Neurophysiol Supp. 1999; 52:97-103.
110. Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009; 120(12): 2008-2039. [DOI:10.1016/j.clinph.2009.08.016]
111. Kerner N, & Prudic J. Current electroconvulsive therapy practice and research in the geriatric population. Neuro psychiatry. 2014; 4(1), 33-54. [DOI:10.2217/npy.14.3]
112. Gazdag G, & Ungvari GS. Electroconvulsive therapy: 80 years old and still going strong. World journal of psychiatry. 2019; 9(1), 1-6. [DOI:10.5498/wjp.v9.i1.1]
113. Bindman LJ, Lippold, OCJ, & Redfearn, JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of longlasting after-effects. Journal of Physiology. 1964; 172, 369-382. [DOI:10.1113/jphysiol.1964.sp007425]
114. Bestmann S, de Berker, AO, & Bonaiuto, J. Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences. 2015; 19, 13-20. [DOI:10.1016/j.tics.2014.10.003]
115. Helfrich, RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, & Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology. 2014; 24, 333-339. [DOI:10.1016/j.cub.2013.12.041]
116. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, & Lu B. Direct current stimulation promotes BDNF- dependent synaptic plasticity: Potential implications for motor learning. Neuron. 2010; 66, 198-204. [DOI:10.1016/j.neuron.2010.03.035]
117. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang, N, Antal A, ... & PascualLeone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimulation. 2008; 1, 206-223. [DOI:10.1016/j.brs.2008.06.004]
118. Bolzoni F, Bączyk M, & Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. Journal of Physiology. 2013; 591, 4027-4042. [DOI:10.1113/jphysiol.2013.257063]
119. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, & Jefferys JG. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Journal of Physiology. 2004; 557, 175-190. [DOI:10.1113/jphysiol.2003.055772]
120. Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, & Bikson M. Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology. 2013; 591, 2563-2578. [DOI:10.1113/jphysiol.2012.247171]
121. Parkin BL, Bhandari M, Glen JC, & Walsh V. The physiological effects of transcranial electrical stimulation do not apply to parameters commonly used in studies of cognitive neuromodulation. Neuropsychologia. 2019; 128, 332-339. [DOI:10.1016/j.neuropsychologia.2018.03.030]
122. De Berker AO, Bikson M, & Bestmann S. Predicting the behavioral impact of transcranial direct current stimulation: Issues and limitations. Frontiers in Human Neuroscience. 2013; 7, 613. [DOI:10.3389/fnhum.2013.00613]
123. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, & Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. Journal of Neurophysiology. 2012; 107, 1881-1889. [DOI:10.1152/jn.00715.2011]
124. Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Role of protein synthesis (24). Nature. 1968; 220, 383-384. [DOI:10.1038/220383a0]
125. Hattori Y, Moriwaki A, & Hori Y. Biphasic effects of polarizing current on adenosine- sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters. 1990; 116, 320-324. [DOI:10.1016/0304-3940(90)90094-P]
126. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, & Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Research. 1995; 684, 206-208. [DOI:10.1016/0006-8993(95)00434-R]
127. Stagg CJ, Bachtiar V, & Johansen-Berg H. The role of GABA in human motor learning. Current Biology. 2011; 21, 480-484. [DOI:10.1016/j.cub.2011.01.069]
128. Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, & Tracey I. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. Journal of Neuroscience. 2013; 33, 11425-11431. [DOI:10.1523/JNEUROSCI.3887-12.2013]
129. Lally N, Nord CL, Walsh V, Roiser JP. Does excitatory fronto-extracephalic tDCS lead to improved working memory performance? F1000Research. 2013. https://doi.org/10.12688/f1000research.2-219.v1 [DOI:10.12688/ f1000 research.2-219.v1.]
130. Nord CL, Lally N, & Charpentier CJ. Harnessing electric potential: DLPFC tDCS induces widespread brain perfusion changes. Frontiers in Systems Neuroscience. 2013; 7, 99. [DOI:10.3389/fnsys.2013.00099]
131. Kupfer DJ, Frank E, & Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012; 379: 1045-55. [DOI:10.1016/S0140-6736(11)60602-8]
132. Dalys GBD, & Collaborators H. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 388: 1603-58.
133. Chachamovich E, Stefanello S, Botega N, & Turecki G. Which are the recent clinical findings regarding the association between depression and suicide? Braz J Psychiatry. 2009; 31(Suppl 1): S18-25. [DOI:10.1590/S1516-44462009000500004]
134. Grimm S, Beck J, Schuepbach D, & et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008; 63: 369-76. [DOI:10.1016/j.biopsych.2007.05.033]
135. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat. 2015; 72: 603-11. [DOI:10.1001/jamapsychiatry.2015.0071]
136. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U.S.A. 2003; 100: 253-8. [DOI:10.1073/pnas.0135058100]
137. Brunoni AR, Boggio PS, De Raedt R, et al. Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double-blinded, controlled trial. J Affect Disord. 2014; 162, 43-9. [DOI:10.1016/j.jad.2014.03.026]
138. Borrione L, Moffa AH, Martin D, Loo CK, Brunoni AR. Transcranial direct current stimulation in the acute depressive episode: a systematic review of current knowledge. J ECT. 2018; 34: 153-63. [DOI:10.1097/YCT.0000000000000512]
139. Stagg CJ, & Nitsche M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011; 17: 37-53. [DOI:10.1177/1073858410386614]
140. Bulubas L, Mezger E, Keeser D, Padberg F, & Brunoni A. Novel neuromodulatory approaches for depression: neurobiological mechanisms. In: Quevedo J, Carvalho AF, Zarate CA, editors. Neurobiology of depression. London: Academic Press. 2019; 347-60. [DOI:10.1016/B978-0-12-813333-0.00031-7]
141. Brunoni AR, & Borrione, L. tDCS in Depressive Disorders. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-43356-7_16 [DOI:10.1007/978-3-030-43356-7_ 16.]
142. Mutz J, Vipulananthan V, Carte B, Hurlemann R, Fu, CHY, Young AH. Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis. BMJ. 2019; 364: l1079. [DOI:10.1136/bmj.l1079]
143. Eslamizade MJ, Behbahanian S, Mahdavi M, Oftadehal M. An Introduction to Neurotechnologies, Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation: Their Applications in the Cognitive Enhancement and Rehabilitation. Shefaye Khatam. 2016; 4 (2): 65-86. [DOI:10.18869/acadpub.shefa.4.2.65]
144. Khanmohammadi R, Sheikh M, Bagherzadeh F, Homanian D, Khajavi D. The Effect of Transcranial Direct Stimulation on Balance in Men with Schizophrenic and Depressive Disorder. Shefaye Khatam. 2020; 9 (1): 56-67. [DOI:10.52547/shefa.9.1.56]
145. Rasmussen SA, & Eisen JL. Clinical features and phenomenology of obsessive compulsive disorder. Psychiatr Ann. 1989; 19(2): 67-73. [DOI:10.3928/0048-5713-19890201-06]
146. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). San Francisco: American Psychiatric Publication. 2013. [DOI:10.1176/appi.books.9780890425596]
147. Milad MR, & Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012; 16(1): 43-51. [DOI:10.1016/j.tics.2011.11.003]
148. Adam Y, Meinlschmidt G, Gloster A.T, Lieb R. Obsessive-compulsive disorder in the community: 12-month prevalence, comorbidity and impairment. Soc Psychiatry Psychiatr Epidemiol 2012; 47(3): 339-49. [DOI:10.1007/s00127-010-0337-5]
149. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010; 15(1): 53-63. [DOI:10.1038/mp.2008.94]
150. Ayuso-Mateos JL. Global burden of obsessive-compulsive disorder in the year 2000. Geneva: World Health Organization. 2006.
151. Volpato C, Piccione F, Cavinato M, Duzzi D, Schiff S, Foscolo L, & Venneri A. Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive-compulsive disorder. Neurocase. 2013; 19 (4): 360-370. [DOI:10.1080/13554794.2012.667131]
152. Palm U, Leitner B, Kirsch B, Behler N, Kumpf U, Wulf L, Padberg F, & Hasan A. Prefrontal tDCS and sertraline in obsessive compulsive disorder: a case report and review of the literature. Neurocase. 2017; 23(2): 173-177. [DOI:10.1080/13554794.2017.1319492]
153. Dinn WM, Ayçiçeği-Dinn A, Göral FS, Karamürsel S, Yildirim EA, Hacioglu-Yildirim M, Gansler DA, Doruk D, & Fregni F. Treatment-resistant obsessive-compulsive disorder: Insights from an open trial of transcranial direct current stimulation (tDCS) to design a RCT. Neurology Psychiatry and Brain Research. 2016; 22: 146-154. [DOI:10.1016/j.npbr.2016.08.003]
154. Gowda SM, Shivakumar V, Narayanaswamy JC, Venkatasubramanian G. Transcranial Direct Current Stimulation for Obsessive-Compulsive Disorder. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. 2020. [DOI:10.1007/978-3-030-43356-7_18]
155. Shahmohammadi Kaleybar M, Bafandeh H, Yousefi R, Rahbaran R. Effect of Transcranial Direct Current Stmulation on the Response Inhibition in Patient with Obsessive Compulsive Disorder. Shefaye Khatam. 2019; 7(2): 1-12. [DOI:10.29252/shefa.7.2.1]
156. Kooteh BR, Dolatshahi B, Nosratabadi M, Bakhshani NM, Mahdavi A, Hakami MC. Combination Therapy and Opioids: Effectiveness of Transcranial Direct-Current Stimulation (tDCS) and Emotion Regulation Training in Reducing Current Drug Craving. Maedica (Bucur). 2020 Mar; 15(1): 53-60.
157. Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ. Repetitive Transcranial Magnetic Stimulation for Treatment of Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Integr Neurosci. 2018; 9(12): 27. [DOI:10.3389/fnint.2018.00027]
158. D'Urso G, Ferrucci R, Bruzzese D, Pascotto A, Priori A, Altamura CA, Galderisi S, & Bravaccio C. Transcranial Direct Current Stimulation for Autistic Disorder. Biological Psychiatry. 2014; 76, e5-e6. [DOI:10.1016/j.biopsych.2013.11.009]
159. D'Urso G, Bruzzese D, Ferrucci R, Priori A, Pascotto A, Galderisi S, Altamura, AC, & Bravaccio C. Transcranial direct current stimulation for hyperactivity and noncompliance in autistic disorder. The World Journal of Biological Psychiatry. 2015; 16: 361-366. [DOI:10.3109/15622975.2015.1014411]
160. D'Urso G, Toscano E, Gallo G, De Bartolomeis A. Transcranial Direct Current Stimulation in Neurodevelopmental Disorders. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. 2020. https://doi. org/10.1007/978-3-030-43356-7_20. [DOI:10.1007/978-3-030-43356-7_20]
161. Esse Wilson J, Quinn DK, Wilson JK, Garcia CM, & Tesche CD. Transcranial Direct Current Stimulation to the Right Temporoparietal Junction for Social Functioning in Autism Spectrum Disorder: A Case Report. The journal of ECT. 2018; 34(1): e10-e13. [DOI:10.1097/YCT.0000000000000445]
162. Esse Wilson J, Trumbo M, Wilson JK, & Tesche CD. Transcranial direct current stimulation (tDCS) over right temporoparietal junction (rTPJ) for social cognition and social skills in adults with autism spectrum disorder (ASD). Journal of Neural Transmission. 2018; 125: 1857-1866. [DOI:10.1007/s00702-018-1938-5]
163. Van Steenburgh JJ, Varvaris M, Schretlen DJ, Vannorsdall TD, & Gordon B. Balanced bifrontal transcranial direct current stimulation enhances working memory in adults with high-functioning autism: a sham-controlled crossover study. Molecular autism. 2017; 8, 40. https://doi.org/10.1186/s13229-017-0152-x [DOI:10. 1186 /s13229-017-0152-x.]
164. Rothärmel M, Moulier V, Vasse M, Isaac C, Faerber M, Bendib B, Miréa-Grivel I, Opolczynski G, Rosier A, & Guillin O. A Prospective Open-Label Pilot Study of Transcranial Direct Current Stimulation in High-Functioning Autistic Patients with a Dysexecutive Syndrome. Neuropsychobiology. 2019; 78: 189-199. [DOI:10.1159/000501025]
165. Schneider HD, & Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clinical Linguistics & Phonetics. 2011; 25: 640 - 654. [DOI:10.3109/02699206.2011.570852]
166. Costanzo F, Menghini D, Casula L, Amendola A, Mazzone L, Valeri G, Vicari S. Transcranial Direct Current Stimulation Treatment in an Adolescent with Autism and Drug-Resistant Catatonia. Brain Stimul. 2015; 8(6):1233-5. [DOI:10.1016/j.brs.2015.08.009]
167. Buccelli C, Di Lorenzo P, Paternoster M, D'Urso G, Graziano V, & Niola M. Electroconvulsive Therapy in Italy: Will Public Controversies Ever Stop? The Journal of ECT. 2016; 32: 207-211. [DOI:10.1097/YCT.0000000000000301]
168. Ghoreishi N, Zare Molkabad S, Baratzade S, Goshvarpoor A, Sadeghi Bajestani G. Analysis of Electroencephalogram of Autism Spectrum Disorder Using Correlation Dimension Changes in brain Map. Shefaye Khatam. 2021; 9 (2): 10-21. [DOI:10.52547/shefa.9.2.10]
169. Pouladi F, Bagheri M, Askarizadeh G. tDCS Anodic Stimulation of Left Hemisphere DLPFC Regulates Hot Executive Performance. Shefaye Khatam. 2020; 8 (4): 39-49. [DOI:10.29252/shefa.8.4.39]
170. Ghadiri Sourman Abadi F, Ebrahimzadeh K, Anvari Anbi S, Ghazanfari N. The Effectiveness of Transcranial Direct-Current Stimulation on Empathy and Moral Judgment of Children with Oppositional Defiant Disorder. Shefaye Khatam. 2021; 10 (1): 45-55. [DOI:10.52547/shefa.10.1.45]
171. Thomas R, Sanders S, Doust J, Beller E, & Glasziou, P. Prevalence of attention-deficit/ hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015; 135(4), e994-e1001. [DOI:10.1542/peds.2014-3482]
172. Prehn-Kristensen A, Munz M, Göder R, Wilhelm I, Korr K, Vahl W, Wiesner C, & Baving L. Transcranial Oscillatory Direct Current Stimulation During Sleep Improves Declarative Memory Consolidation in Children with Attention-deficit/ hyperactivity Disorder to a Level Comparable to Healthy Controls. Brain Stimulation. 2014; 7: 793-799. [DOI:10.1016/j.brs.2014.07.036]
173. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio PS, Fregni F. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012; 5(3): 175-195. [DOI:10.1016/j.brs.2011.03.002]
174. Chang MC, Kim DY, & Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain stimulation. 2015; 8(3): 561-566. [DOI:10.1016/j.brs.2015.01.411]
175. Munz M, Prehn-Kristensen A, Thielking F, Mölle M, Göder R, & Baving L. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Frontiers in Cellular Neuroscience. 2015; 9: 307. [DOI:10.3389/fncel.2015.00307]
176. Soff C, Sotnikova AG, Christiansen H, Becker K, & Siniatchkin M. Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. Journal of Neural Transmission. 2016; 124, 133-144. [DOI:10.1007/s00702-016-1646-y]
177. Cachoeira CT, Leffa DT, Mittelstadt SD, Mendes LS, Brunoni AR, Pinto JV, Blazius V, Machado VH, Bau CH, Rohde LA, Grevet EH, & Schestatsky P. Positive effects of transcranial direct current stimulation in adult patients with attention-deficit/hyperactivity disorder a pilot randomized controlled study. Psychiatry Research. 2017; 247, 28-32. [DOI:10.1016/j.psychres.2016.11.009]
178. Moezzi S, Ghoshuni M, Amiri M. Assessment of the Effect of Transcranial Direct Current Stimulations (tDCS) in Focused Attention Enhancement Using Event-Related Potentials. Shefaye Khatam. 2020; 9 (1): 25-35. [DOI:10.52547/shefa.9.1.25]
179. Månsson KN, Salami A, Frick A, Carlbring P, Andersson G, Furmark T, & Boraxbekk CJ. Neuroplasticity in response to cognitive behavior therapy for social anxiety disorder. Translational psychiatry. 2016; 6(2): e727. [DOI:10.1038/tp.2015.218]
180. Prasko J, Horácek J, Záleský R, Kopecek M, Novák T, Pasková B, Skrdlantová L, Belohlávek O, & Höschl C. The change of regional brain metabolism (18FDG PET) in panic disorder during the treatment with cognitive behavioral therapy or antidepressants. Neuroendocrinology letters. 2004; 25(5): 340-348.
181. Nishimura Y, Tanii H, Fukuda M, Kajiki N, Inoue K, Kaiya H, Nishida A, Okada M, & Okazaki Y. Frontal dysfunction during a cognitive task in drug-naive patients with panic disorder as investigated by multi-channel near-infrared spectroscopy imaging. Neuroscience research. 2007; 59(1): 107-112. [DOI:10.1016/j.neures.2007.05.016]
182. Etkin A, & Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American journal of psychiatry. 2007; 164 (10): 1476-1488. [DOI:10.1176/appi.ajp.2007.07030504]
183. Ironside M, Browning M, Ansari TL, Harvey CJ, Sekyi-Djan MN, Bishop SJ, Harmer CJ, & O'Shea J. Effect of Prefrontal Cortex Stimulation on Regulation of Amygdala Response to Threat in Individuals with Trait Anxiety: A Randomized Clinical Trial. JAMA psychiatry. 2019; 76(1): 71-78. [DOI:10.1001/jamapsychiatry.2018.2172]
184. Adolphs R. Fear, faces, and the human amygdala. Current opinion in neurobiology. 2008; 18(2): 166-172. [DOI:10.1016/j.conb.2008.06.006]
185. Shiozawa P, Da Silva, ME, Dias DR, Chaves AC, De Oliveira Diniz BS, & Cordeiro Q. Transcranial direct current stimulation for depression in a 92-year-old patient: a case study. Psychogeriatrics: the official journal of the Japanese Psychogeriatric Society. 2014; 14(4): 269-270. [DOI:10.1111/psyg.12100]
186. Heeren A, Billieux J, Philippot P, De Raedt R, Baeken C, de Timary P, et al. Impact of transcranial direct current stimulation on attentional bias for threat: a proof-of-concept study among individuals with social anxiety disorder. Social Cognitive and Affective Neuroscience. 2017; 12(2): 251-260. [DOI:10.1093/scan/nsw119]
187. Movahed FS, Goradel JA, Pouresmali A, & Mowlaie M. Effectiveness of Transcranial Direct Current Stimulation on Worry, Anxiety, and Depression in Generalized Anxiety Disorder: A Randomized, Single-Blind Pharmacotherapy and Sham-Controlled Clinical Trial. Iranian journal of psychiatry and behavioral sciences, 2018; 12: e11071. [DOI:10.5812/ijpbs.11071]
188. Wittmann A, Schlagenhauf F, Guhn A, Lueken U, Gaehlsdorf C, Stoy M, Bermpohl F, Fydrich T, Pfleiderer B, Bruhn H, Gerlach AL, Kircher T, Straube B, Wittchen HU, Arolt V, Heinz A, & Ströhle A. Anticipating agoraphobic situations: the neural correlates of panic disorder with agoraphobia. Psychological medicine. 2014; 44(11): 2385-2396. [DOI:10.1017/S0033291713003085]
189. Palm U, Kirsch V, Kübler H, Sarubin N, Keeser D, Padberg F, & Dieterich M. Transcranial direct current stimulation (tDCS) for treatment of phobic postural vertigo: an open label pilot study. European archives of psychiatry and clinical neuroscience. 2019; 269(2): 269-272. [DOI:10.1007/s00406-018-0894-2]
190. Vicario CM, Salehinejad MA, Avenanti A, Nitsche MA. Transcranial Direct Current Stimulation (tDCS) in Anxiety Disorders. In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. 2020. https://doi. org/10.1007/ 978-3-030-43356-7_21.
191. Vafaye Sisakht S, Ramezani K. The Effects of Transcranial Direct Current Stimulation on Mental Health of Veterans with Psychiatric Disorders. Shefaye Khatam. 2017; 5 (2): 36-42. [DOI:10.18869/acadpub.shefa.5.2.36]
192. Amini A, Vaezmousavi M. The Effect of Transcranial Electrical Stimulation on Athletic Performance Optimization: Systematic Review, Meta- Analysis, and Proposing a Theoretical Model. Shefaye Khatam. 2021; 9 (4): 81-104. [DOI:10.52547/shefa.9.4.81]
193. Sarhadi S, Ghaemi F, Dortaj F, Delavar A. Comparison of the Effectiveness of Sertraline, Transcranial Direct Stimulation Current and their Combination on Post-Traumatic Stress Disorder in Veterans. Shefaye Khatam. 2019; 8(1): 51-62. [DOI:10.29252/shefa.8.1.51]
194. Rigi Kooteh B, Bakhshani N, Nosratabadi M, Dolatshahi B. Effectiveness of Transcranial Direct-Current Stimulation (tDCS) and Emotion Regulation Training in Reducing Current Drug Craving and Drug-Use Thoughts and Fantasies in Opioid-Dependent Patients: The Issue of Precedence. Int J High Risk Behav Addict. 2019; 8(2): e94499. [DOI:10.5812/ijhrba.94499]
195. Au J, Katz B, Buschkuehl M, et al. Enhancing Working Memory Training with Transcranial Direct Current Stimulation. Journal of Cognitive Neuroscience. 2016; 28(9): 1419-1432. [DOI:10.1162/jocn_a_00979]
196. Ruf SP, Fallgatter AJ, & Plewnia C. Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports. 2017; 7: 876. [DOI:10.1038/s41598-017-01055-1]
197. Park SH, Seo JH, Kim YH, & Ko MH. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014; 25: 122-126. [DOI:10.1097/WNR.0000000000000080]
198. Jones KT, Stephens JA, Alam M, Bikson M, & Berryhill ME. Longitudinal neurostimulation in older adults improves working memory. PLoS One. 2015; 10: e0121904. [DOI:10.1371/journal.pone.0121904]
199. Richmond LL, Wolk D, Chein JM, & Olson IR. Transcranial direct current stimulation enhances verbal working memory training performance over time and near-transfer outcomes. Journal of Cognitive Neuroscience. 2014; 26: 2443-2454. [DOI:10.1162/jocn_a_00657]
200. Talsma LJ, Kroese H A, & Slagter HA. Boosting cognition: Effects of multiple- session transcranial direct current stimulation on working memory. Journal of Cognitive Neuroscience. 2017; 29, 755-769. [DOI:10.1162/jocn_a_01077]
201. Martin DM, Liu R, Alonzo A, Green M, & Loo CK. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research. 2014; 232, 3345-3351. [DOI:10.1007/s00221-014-4022-x]
202. Ghorbanian B, Saberi Y, Rasouli M. The Effect of Pilates Training and Electrical Stimulation on Motor and Cognitive Function of Women with Multiple Sclerosis. Shefaye Khatam. 2019; 8 (1): 63-76. [DOI:10.29252/shefa.8.1.63]
203. Teymuri Kheravi M, Saberi Kakhki A, Taheri H, Ghanaie Chaman Abad A, Darainy M. The Use of Direct Current Stimulation to Investigate the Role of Each Hemisphere in Motor Learning of Reaching Task. Shefaye Khatam. 2017; 5 (4): 66-75. [DOI:10.18869/acadpub.shefa.5.4.66]
204. Alavi M, Mirzaei A, Ebrahimpour R. Effects of Regular and Irregular Deep Brain Stimulation on the Basal Ganglia Dynamics: A Computational Approach. Shefaye Khatam. 2019; 7 (1): 1-12. [DOI:10.29252/shefa.7.1.1]
205. Byrne EM, Ewbank MP, Gathercole SE, Holmes J. The effects of transcranial direct current stimulation on within- and cross-paradigm transfer following multi-session backward recall training. Brain and Cognition. 2020; 141: 105552. [DOI:10.1016/j.bandc.2020.105552]
206. Meinzer M, Darkow R, Lindenberg R, & Flöel A. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain. 2016; 139: 1152-1163. [DOI:10.1093/brain/aww002]
207. Karbach J., & Kray J. Executive Function Training. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-39292-5_14 [DOI:10.1007/978-3-030-39292-5_14.]
208. Dockery CA, Hueckel-Weng R, Birbaumer N, & Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience. 2009; 29: 7271-7277. [DOI:10.1523/JNEUROSCI.0065-09.2009]
209. Ditye T, Jacobson L, Walsh V, & Lavidor M. Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental Brain Research. 2012; 219: 363-368. [DOI:10.1007/s00221-012-3098-4]
210. Brunoni AR, & Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition. 2014; 86, 1-9. [DOI:10.1016/j.bandc.2014.01.008]
211. Manenti R, Cotelli MS, Cobelli C, Gobbi E, Brambilla M, Rusich D, et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: A randomized, placebo-controlled study. Brain Stimulation. 2018; 11: 1251-1262. [DOI:10.1016/j.brs.2018.07.046]
212. Segrave RA, Arnold S, Hoy K, & Fitzgerald PB. Concurrent cognitive control training augments the antidepressant efficacy of tDCS: A pilot study. Brain Stimulation. 2014; 7: 325-331. [DOI:10.1016/j.brs.2013.12.008]
213. Cotelli M, Manenti R, Brambilla M, Petesi M, Rosini S, Ferrari C, Zanetti O, Miniussi C. Anodal tDCS during face-name associations memory training in Alzheimer's patients. Front Aging Neurosci. 2014; 19: 6:38. [DOI:10.3389/fnagi.2014.00038]
214. Cotelli M, Manenti R, Petesi M, Brambilla M, Cosseddu M, Zanetti O, Miniussi C, Padovani A, Borroni B. Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. J Alzheimers Dis. 2014; 39(4): 799-808. [DOI:10.3233/JAD-131427]
215. Johann VE, & Karbach J. Educational Application of Cognitive Training. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-39292-5_23 [DOI:10.1007/978-3-030-39292-5_23.]
216. Schaeffner S, Chevalier N, Kubota M, Karbach J. Metacognitive Training. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. https://doi. org/10. 1007 / 978 -3-030-39292-5_18
217. Cappelletti M, Gessaroli E, Hithersay R, Mitolo M, Didino D, Kanai R, Cohen Kadosh R, Walsh V. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci. 2013; 11; 33(37): 14899-907. [DOI:10.1523/JNEUROSCI.1692-13.2013]
218. Cappelletti M, Pikkat H, Upstill E, Speekenbrink M, Walsh V. Learning to integrate versus inhibiting information is modulated by age. J Neurosci. 2015; 4, 35(5): 2213-25. [DOI:10.1523/JNEUROSCI.1018-14.2015]
219. Looi CY, Lim J, Sella F, Lolliot S, Duta M, Avramenko AA, & Kadosh RC. Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study. Scientific Reports. 2017; 7: 1-10. [DOI:10.1038/s41598-017-04649-x]
220. Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology. 2013; 23: 987-992. [DOI:10.1016/j.cub.2013.04.045]
221. Popescu T, Krause B, Terhune DB, Twose O, Page T, Humphreys G, & Kadosh RC. Transcranial random noise stimulation mitigates increased difficulty in an arithmetic learning task. Neuropsychologia. 2016; 81: 255-264. [DOI:10.1016/j.neuropsychologia.2015.12.028]
222. Könen T, Strobach T, & Karbach J. Working Memory Training. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. [DOI:10. 1007/978-3-030-39292-5_11.]
223. Holmes J, Byrne EM, Gathercole SE, & Ewbank MP. Transcranial random noise stimulation does not enhance the effects of working memory training. Journal of Cognitive Neuroscience. 2016; 28: 1-13. [DOI:10.1162/jocn_a_00993]
224. Brem AK, Almquist JN, Mansfield K, Plessow F, Sella F, Santarnecchi E, Orhan U, McKanna J, Pavel M, Mathan S, Yeung N, Pascual-Leone A, Kadosh RC; Honeywell SHARP Team authors. Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia. 2018; 118: 107-114. [DOI:10.1016/j.neuropsychologia.2018.04.008]
225. Antonenko D, Faxel M, Grittner U, Lavidor M, Flöel A. Effects of Transcranial Alternating Current Stimulation on Cognitive Functions in Healthy Young and Older Adults. Neural Plast. 2016; 1-13. [DOI:10.1155/2016/4274127]
226. Meiron O, & Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clinical Neurophysiology. 2014; 125: 77-82. [DOI:10.1016/j.clinph.2013.06.013]
227. Pahor A, & Jaušovec N. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. International Journal of Psychophysiology. 2014; 93: 322-331. [DOI:10.1016/j.ijpsycho.2014.06.015]
228. Horvath JC, Forte JD, & Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation. 2015; 8: 535-550. [DOI:10.1016/j.brs.2015.01.400]
229. Price AR, & Hamilton RH. A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimulation. 2015; 8: 2014-2016. [DOI:10.1016/j.brs.2015.03.007]
230. Cochrane A, & Green CS. New Directions in Training Designs. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. [DOI:10. 1007/978-3-030-39292-5_3.]
231. Schmiedek F. Methods and Designs. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-39292-5_2 [DOI:10.1007/978-3-030-39292-5_2.]
232. Morrison AB, & Chein JM. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review. 2011; 18, 46-60. [DOI:10.3758/s13423-010-0034-0]
233. Parkin BL, Ekhtiari H, & Walsh VF. Non-invasive human brain stimulation in cognitive neuroscience: A primer. Neuron, 2015; 87: 932-945. [DOI:10.1016/j.neuron.2015.07.032]
234. Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, & Stine-Morrow, EA. Do "brain-training" programs work? Psychological Science in the Public Interest. 2016; 17: 103-186. [DOI:10.1177/1529100616661983]
235. Katz B, Jones MR, Shah P, Buschkuehl M, Jaeggi SM. Individual Differences in Cognitive Training Research. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. [DOI:10. 1007/978-3-030-39292-5_8.]
236. Könen T, & Auerswald M. Statistical Modeling of Latent Change. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. 2021. [DOI:10. 1007/978-3-030-39292-5_5.]
237. Bikson M, Rahman A, & Datta A. Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience. 2012; 43: 176-183. [DOI:10.1177/1550059412445138]
238. Krause B, & Cohen Kadosh R. Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience. 2014; 8: 25. [DOI:10.3389/fnsys.2014.00025]
239. López-Alonso V, Cheeran B, Río-Rodríguez D, & Fernández-del-Olmo M. Inter- individual variability in response to Non-invasive brain stimulation paradigms. Brain Stimulation. 2014; 7: 372-380. [DOI:10.1016/j.brs.2014.02.004]
240. O'Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, & Johansen-Berg H. Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage. 2014; 85: 924-933. [DOI:10.1016/j.neuroimage.2013.05.096]
241. Nord CL, Halahakoon DC, Limbachya T, Charpentier C, Lally N, Walsh V, et al. Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsycho pharmacology. 2019; 44: 1613-1622. [DOI:10.1038/s41386-019-0401-0]
242. Pascual-Leone A, Valls-Solé J, Wassermann, EM, & Hallett M. Responses to rapid- rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994; 117: 847-858. [DOI:10.1093/brain/117.4.847]
243. Strobach Tilo, & Karbach Julia. Cognitive Training; An Overview of Features and Applications. Translated by Mahdavi Abed, Rigi Koteh Behzad, Ahmadi Farzaneh, Chakri Musa. 1400; Tehran: Raznahan Publications.
244. Beveridge AW, Renvoize EB. Electricity: a history of its use in the treatment of mental illness in Britain during the second half of the 19th century. Br J Psychiatry. 1988; 153: 157-62. [DOI:10.1192/bjp.153.2.157]
245. Colwell H. An essay on the history of electrotherapy and diagnosis. London: Heinemann. 1922. [DOI:10.1259/are.1922.0123]
246. Kalu UG, Sexton CE, Loo CK, & Ebmeier KP. Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychological medicine. 2012; 42(9): 1791-1800. [DOI:10.1017/S0033291711003059]
247. Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny MF, Saoud M, Mechri A, Poulet E. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012; 169(7): 719-24. [DOI:10.1176/appi.ajp.2012.11071091]
248. Heth I, & Lavidor M. Improved reading measures in adults with dyslexia following transcranial direct current stimulation treatment. Neuropsychologia. 2015; 70: 107-113. [DOI:10.1016/j.neuropsychologia.2015.02.022]
249. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16: 17-26. [DOI:10.1016/j.tics.2011.11.007]
250. Hämmerer D, Bonaiuto J, Klein-Flügge M, Bikson M, & Bestmann S. Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics. Scientific Reports. 2016; 6: 25160. [DOI:10.1038/srep25160]
251. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, Veronezi BP, Nogueira BS, Aparicio LVM, Razza LB, Chamorro R, Tort LC, Fraguas R, Lotufo PA, Gattaz WF, Fregni F, Benseñor IM; ELECT-TDCS Investigators. Trial of Electrical Direct-Current Therapy versus Escitalopram for Depression. N Engl J Med. 2017; 29: 376(26): 2523-2533. [DOI:10.1056/NEJMoa1612999]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi A, Ahmadi F, Haj Abbas Tabrizi E, Gharaian H, Rigi Koote B, Imaninasab V et al . Transcranial Electrical Stimulation (tES): History, Theoretical Foundations and Applications. Shefaye Khatam 2022; 11 (1) :69-104
URL: http://shefayekhatam.ir/article-1-2311-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (Winter 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4642