[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 11, Issue 1 (Winter 2022) ::
Shefaye Khatam 2022, 11(1): 133-153 Back to browse issues page
Biomarkers in Traumatic Brain Injury
Hoorie Sadat Sabet , Fereshte Sadat Sabet , Karim Shojaei , Faezeh Yaghoubi , Maryam Jafarian *
Brain and Spinal Cord Lesions Research Center, Neuroscience Research Institute, Tehran University of Medical Sciences, Tehran, Iran , mjafarian@sina.tums.ac.ir
Abstract:   (828 Views)
Introduction: The purpose of this review is to update the significance of existing biomarkers as well as new biomarkers that are emerging and can be clinically implemented in the near future. Due to the heterogeneity in the occurrence and diagnosis of TBI, in the last two decades, studies related to the acquisition of biomarkers for this major health challenge in the world have increased exponentially. Detection of various biomarkers, such as the molecules in cerebrospinal fluid and blood, as well as imaging approaches, have been widely evaluated. Conclusion: In several studies, these biomarkers are used to measure the severity of brain damage, identify patients at higher risk for adverse outcomes, and predict the duration of recovery. Despite the significant progress in this field, each of the existing biomarkers has its own limitations, so many studies on new biomarkers such as microRNA, extracellular vesicles and neurometabolites are being conducted. As a result, updating the new findings of these biomarkers has great biological and clinical importance.
Keywords: Biomarkers, Brain, Wounds and Injuries
Full-Text [PDF 1599 kb]   (788 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Molecular Neurobiology
1. Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, et al. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Frontiers in neurology. 2019;10:446. 1-45. [DOI:10.3389/fneur.2019.00446]
2. Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, et al. Blood-based traumatic brain injury biomarkers-Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert review of molecular diagnostics. 2021;21(12):1303-21. [DOI:10.1080/14737159.2021.2005583]
3. Edalatfar M, Piri SM, Mehrabinejad M-M, Mousavi M-S, Meknatkhah S, Fattahi M-R, et al. Biofluid biomarkers in traumatic brain injury: a systematic scoping review. Neurocritical care. 2021:1-14. [DOI:10.1007/s12028-020-01173-1]
4. Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. Journal of neurotrauma. 2021;38(8):1086-106. [DOI:10.1089/neu.2017.5182]
5. Shahim P, Politis A, van der Merwe A, Moore B, Chou Y-Y, Pham DL, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95(6):e610-e22. [DOI:10.1212/WNL.0000000000009983]
6. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Experimental neurology. 2013;35(8): 43-246. [DOI:10.1016/j.expneurol.2012.01.013]
7. Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron. 2019;103(3):367-79. [DOI:10.1016/j.neuron.2019.06.002]
8. Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neuroscience & Biobehavioral Reviews. 2021;130:433-47. [DOI:10.1016/j.neubiorev.2021.08.029]
9. McDonald SJ, O'Brien WT, Symons GF, Chen Z, Bain J, Major BP, et al. Prolonged elevation of serum neurofilament light after concussion in male Australian football players. Biomarker research. 2021;9(1):1-9. [DOI:10.1186/s40364-020-00256-7]
10. Xu LB, Yue JK, Korley F, Puccio AM, Yuh EL, Sun X, et al. High-sensitivity C-reactive protein is a prognostic biomarker of six-month disability after traumatic brain injury: results from the TRACK-TBI study. Journal of neurotrauma. 2021;38(7):918-27. [DOI:10.1089/neu.2020.7177]
11. Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, et al. The S100B story: from biomarker to active factor in neural injury. Journal of neurochemistry. 2019;148(2):168-87. [DOI:10.1111/jnc.14574]
12. Ingebrigtsen T, Jacobsen EA, Langbakk B, Romner B. Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery. 1999;45(3):468. [DOI:10.1097/00006123-199909000-00010]
13. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. Journal of neurotrauma. 2004;21(11):1553-61. [DOI:10.1089/neu.2004.21.1553]
14. Undén J, Ingebrigtsen T, Romner B, Committee SN. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC medicine. 2013;11:1-14. [DOI:10.1186/1741-7015-11-50]
15. Hasselblatt M, Mooren F, Von Ahsen N, Keyvani K, Fromme A, Schwarze-Eicker K, et al. Serum S100β increases in marathon runners reflect extracranial release rather than glial damage. Neurology. 2004;62(9):1634-6. [DOI:10.1212/01.WNL.0000123092.97047.B1]
16. Rogatzki MJ, Keuler SA, Harris AE, Ringgenberg SW, Breckenridge RE, White JL, et al. Response of protein S100B to playing American football, lifting weights, and treadmill running. Scandinavian Journal of Medicine & Science in Sports. 2018;28(12):2505-14. [DOI:10.1111/sms.13297]
17. Anderson RE, Hansson L-O, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255-60. [DOI:10.1227/00006123-200106000-00012]
18. Townend W, Dibble C, Abid K, Vail A, Sherwood R, Lecky F. Rapid elimination of protein S-100B from serum after minor head trauma. Journal of neurotrauma. 2006;23(2):149-55. [DOI:10.1089/neu.2006.23.149]
19. Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, et al. Subconcussive impact-dependent increase in plasma S100β levels in collegiate football players. Journal of neurotrauma. 2017;34(14):2254-60. [DOI:10.1089/neu.2016.4786]
20. Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PloS one. 2013;8(3):e56805. [DOI:10.1371/journal.pone.0056805]
21. Stålnacke B-M, Tegner Y, Sojka P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Injury. 2004;18(9):899-909. [DOI:10.1080/02699050410001671865]
22. Huibregtse ME, Nowak MK, Kim JE, Kalbfell RM, Koppineni A, Ejima K, et al. Does acute soccer heading cause an increase in plasma S100B? A randomized controlled trial. Plos one. 2020;15(10):e0239507. [DOI:10.1371/journal.pone.0239507]
23. Straume-Næsheim TM, Andersen TE, Jochum M, Dvorak J, Bahr R. Minor head trauma in soccer and serum levels of S100B. Neurosurgery. 2008;62(6):1297-306. [DOI:10.1227/01.neu.0000333301.34189.3d]
24. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin has chaperone-like activity similar to that of small heat shock proteins. Journal of Biological Chemistry. 1999;274(11):6875-81. [DOI:10.1074/jbc.274.11.6875]
25. Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends in biochemical sciences. 2000;25(3):95-8. [DOI:10.1016/S0968-0004(99)01534-0]
26. Kim N, Yoo JC, Han JY, Hwang EM, Kim YS, Jeong EY, et al. Human nuclear clusterin mediates apoptosis by interacting with Bcl‐XL through C‐terminal coiled coil domain. Journal of cellular physiology. 2012;227(3):1157-67. [DOI:10.1002/jcp.22836]
27. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, et al. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clinical cancer research. 2009;15(1):48-59. [DOI:10.1158/1078-0432.CCR-08-1805]
28. Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. The international journal of biochemistry & cell biology. 1995;27(7):633-45. [DOI:10.1016/1357-2725(95)00027-M]
29. Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's disease: mechanisms, genetics, and lessons from other pathologies. Frontiers in neuroscience. 2019;13:164. [DOI:10.3389/fnins.2019.00164]
30. Song H, Zhou H, Qu Z, Hou J, Chen W, Cai W, et al. From analysis of ischemic mouse brain proteome to identification of human serum clusterin as a potential biomarker for severity of acute ischemic stroke. Translational stroke research. 2019;10:546-56. [DOI:10.1007/s12975-018-0675-2]
31. Yu W, Chen D, Wang Z, Zhou C, Luo J, Xu Y, et al. Time-dependent decrease of clusterin as a potential cerebrospinal fluid biomarker for drug-resistant epilepsy. Journal of Molecular Neuroscience. 2014;54:1-9. [DOI:10.1007/s12031-014-0237-3]
32. Weinstein G, Beiser AS, Preis SR, Courchesne P, Chouraki V, Levy D, et al. Plasma clusterin levels and risk of dementia, Alzheimer's disease, and stroke. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2016;3:103-9. [DOI:10.1016/j.dadm.2016.06.005]
33. Das Gupta S, Lipponen A, Paldanius KM, Puhakka N, Pitkänen A. Dynamics of clusterin protein expression in the brain and plasma following experimental traumatic brain injury. Scientific reports. 2019;9(1):202-8. [DOI:10.1038/s41598-019-56683-6]
34. Bellander B-M, von Holst H, Fredman P, Svensson M. Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. Journal of neurosurgery. 1996;85(3):468-75. [DOI:10.3171/jns.1996.85.3.0468]
35. Iwata A, Browne KD, Chen XH, Yuguchi T, Smith DH. Traumatic brain injury induces biphasic upregulation of ApoE and ApoJ protein in rats. Journal of neuroscience research. 2005;82 (1):103-14. [DOI:10.1002/jnr.20607]
36. Huang Z, Cheng C, Jiang L, Yu Z, Cao F, Zhong J, et al. Intraventricular apolipoprotein ApoJ infusion acts protectively in Traumatic Brain Injury. Journal of neurochemistry. 2016;136(5):1017-25. [DOI:10.1111/jnc.13491]
37. Troakes C, Smyth R, Noor F, Maekawa S, Killick R, King A, et al. Clusterin expression is upregulated following acute head injury and localizes to astrocytes in old head injury. Neuropathology. 2017;37(1):12-24. [DOI:10.1111/neup.12320]
38. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research. 2010;7(8):656-64. [DOI:10.2174/156720510793611592]
39. Castellani RJ, Perry G. Tau biology, tauopathy, traumatic brain injury, and diagnostic challenges. Journal of Alzheimer's Disease. 2019;67(2):447-67. [DOI:10.3233/JAD-180721]
40. Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. The American journal of pathology. 2012;181(4):1426-35. [DOI:10.1016/j.ajpath.2012.06.033]
41. Vogels T, Leuzy A, Cicognola C, Ashton NJ, Smolek T, Novak M, et al. Propagation of tau pathology: integrating insights from postmortem and in vivo studies. Biological psychiatry. 2020;87(9):808-18. [DOI:10.1016/j.biopsych.2019.09.019]
42. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(1):43-64. [DOI:10.1093/brain/aws307]
43. Lin Y-S, Lee W-J, Wang S-J, Fuh J-L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Scientific reports. 2018;8(1):17368. [DOI:10.1038/s41598-018-35766-w]
44. Tsitsopoulos PP, Marklund N. Amyloid-β peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: a review of experimental and clinical studies. Frontiers in neurology. 2013;4:79. [DOI:10.3389/fneur.2013.00079]
45. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of Neuropathology & Experimental Neurology. 2009;68(7):709-35. [DOI:10.1097/NEN.0b013e3181a9d503]
46. Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KK. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. Journal of neurotrauma. 2015;32(5):342-52. [DOI:10.1089/neu.2014.3548]
47. Gu Y, Oyama F, Ihara Y. τ is widely expressed in rat tissues. Journal of neurochemistry. 1996;67(3):1235-44. [DOI:10.1046/j.1471-4159.1996.67031235.x]
48. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, et al. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA neurology. 2017;74(9):1063-72. [DOI:10.1001/jamaneurol.2017.0655]
49. Stern RA, Tripodis Y, Baugh CM, Fritts NG, Martin BM, Chaisson C, et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. Journal of alzheimer's disease. 2016;51(4):1099-109. [DOI:10.3233/JAD-151028]
50. Montenigro PH, Baugh CM, Daneshvar DH, Mez J, Budson AE, Au R, et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimer's research & therapy. 2014;6(5):1-17. [DOI:10.1186/s13195-014-0068-z]
51. Clarke GJB, Skandsen T, Zetterberg H, Einarsen CE, Feyling C, Follestad T, et al. One-year prospective study of plasma biomarkers from CNS in patients with mild traumatic brain injury. Frontiers in Neurology. 2021;12:643743. [DOI:10.3389/fneur.2021.643743]
52. Gill J, Merchant-Borna K, Jeromin A, Livingston W, Bazarian J. Acute plasma tau relates to prolonged return to play after concussion. Neurology. 2017;88(6):595-602. [DOI:10.1212/WNL.0000000000003587]
53. Mondello S, Guedes VA, Lai C, Czeiter E, Amrein K, Kobeissy F, et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: temporal profile, outcome prediction and therapy implications. Cells. 2020;9(4):977. [DOI:10.3390/cells9040977]
54. Kenney K, Qu B-X, Lai C, Devoto C, Motamedi V, Walker WC, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain injury. 2018;32(10):1276-84. [DOI:10.1080/02699052.2018.1483530]
55. Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, Gilmore A, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. The FASEB Journal. 2019;33(4):5082. [DOI:10.1096/fj.201802319R]
56. Winston CN, Romero HK, Ellisman M, Nauss S, Julovich DA, Conger T, et al. Assessing neuronal and astrocyte derived exosomes from individuals with mild traumatic brain injury for markers of neurodegeneration and cytotoxic activity. Frontiers in neuroscience. 2019;13:1005. [DOI:10.3389/fnins.2019.01005]
57. Guedes VA, Lai C, Devoto C, Edwards KA, Mithani S, Sass D, et al. Extracellular vesicle proteins and micrornas are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury. Frontiers in Pharmacology. 2021;12:745348. [DOI:10.3389/fphar.2021.745348]
58. Beard K, Meaney DF, Issadore D. Clinical applications of extracellular vesicles in the diagnosis and treatment of traumatic brain injury. Journal of neurotrauma. 2020;37(19):2045-56. [DOI:10.1089/neu.2020.6990]
59. Yan Y, Xu T-H, Melcher K, Xu HE. Defining the minimum substrate and charge recognition model of gamma-secretase. Acta Pharmacologica Sinica. 2017;38(10):1412-24. [DOI:10.1038/aps.2017.35]
60. Schofield P, Tang M, Marder K, Bell K, Dooneief G, Chun M, et al. Alzheimer's disease after remote head injury: an incidence study. Journal of Neurology, Neurosurgery & Psychiatry. 1997;62(2):119-24. [DOI:10.1136/jnnp.62.2.119]
61. Williams C, Wood RL, Howe H. Alexithymia is associated with aggressive tendencies following traumatic brain injury. Brain injury. 2019;33(1):69-77. [DOI:10.1080/02699052.2018.1531302]
62. Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, Diehl T, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain injury. 2018;32(11):1359-66. [DOI:10.1080/02699052.2018.1471738]
63. Peltz CB, Kenney K, Gill J, Diaz-Arrastia R, Gardner RC, Yaffe K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology. 2020;95(9):e1126-e33. [DOI:10.1212/WNL.0000000000010087]
64. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. The FASEB Journal. 2016;30(11):3853. [DOI:10.1096/fj.201600756R]
65. Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High complement levels in astrocyte‐derived exosomes of Alzheimer disease. Annals of neurology. 2018;83(3):544-52. [DOI:10.1002/ana.25172]
66. Winston CN, Goetzl EJ, Schwartz JB, Elahi FM, Rissman RA. Complement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer's disease dementia. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2019;11:61-6. [DOI:10.1016/j.dadm.2018.11.002]
67. Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. British journal of pharmacology. 2016;173(4):692-702. [DOI:10.1111/bph.13125]
68. Lucas S, Rothwell N, Gibson R. The role of inflammation in CNS disease and injury. Br J Pharmacol. 2006;147(Suppl 1):S232-40. [DOI:10.1038/sj.bjp.0706400]
69. Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957-67. [DOI:10.1016/j.immuni.2017.06.006]
70. Codeluppi S, Fernandez-Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS One. 2014;9(3):e92649. [DOI:10.1371/journal.pone.0092649]
71. Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, et al. Role of interleukin-10 in acute brain injuries. Frontiers in neurology. 2017;8:244. [DOI:10.3389/fneur.2017.00244]
72. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology. 2014;6(10):a016295. [DOI:10.1101/cshperspect.a016295]
73. Feuerstein G, Liu T, Barone F. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovascular and brain metabolism reviews. 1994;6(4):341-60.
74. Jung HH, Kim J-Y, Lim JE, Im Y-H. Cytokine profiling in serum-derived exosomes isolated by different methods. Scientific reports. 2020; 1(1): 1-11. [DOI:10.1038/s41598-020-70584-z]
75. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends in neurosciences. 2015;38(6):364-74. [DOI:10.1016/j.tins.2015.04.003]
76. Nekludov M, Bellander B-M, Gryth D, Wallen H, Mobarrez F. Brain-derived microparticles in patients with severe isolated TBI. Brain injury. 2017;31(13-14):1856-62. [DOI:10.1080/02699052.2017.1358395]
77. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. [DOI:10.1126/science.1260419]
78. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochemical Journal. 2016;473(16):2453-62. [DOI:10.1042/BCJ20160082]
79. Papa L, Slobounov SM, Breiter HC, Walter A, Bream T, Seidenberg P, et al. Elevations in microRNA biomarkers in serum are associated with measures of concussion, neurocognitive function, and subconcussive trauma over a single national collegiate athletic association division I season in collegiate football players. Journal of neurotrauma. 2019;36(8):1343-51. [DOI:10.1089/neu.2018.6072]
80. Czeiter E, Amrein K, Gravesteijn BY, Lecky F, Menon DK, Mondello S, et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine. 2020;56. [DOI:10.1016/j.ebiom.2020.102785]
81. Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. Journal of neurotrauma. 2014;31(1):19-25. [DOI:10.1089/neu.2013.3040]
82. Bazarian JJ, Biberthaler P, Welch RD, Lewis LM, Barzo P, Bogner-Flatz V, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. The Lancet Neurology. 2018;17(9):782-9. [DOI:10.1016/S1474-4422(18)30231-X]
83. Yuan A, Rao MV, Nixon RA. Neurofilaments at a glance. Journal of cell science. 2012;125(14):3257-63. [DOI:10.1242/jcs.104729]
84. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology. 2018;14(10):577-89. [DOI:10.1038/s41582-018-0058-z]
85. Xiao X, Wu Z-C, Chou K-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PloS one. 2011;6 (6):e20592. [DOI:10.1371/journal.pone.0020592]
86. Shahim P, Gren M, Liman V, Andreasson U, Norgren N, Tegner Y, et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Scientific reports. 2016;6(1):36791. [DOI:10.1038/srep36791]
87. Oliver JM, Jones MT, Kirk KM, Gable DA, Repshas JT, Johnson TA, et al. Serum neurofilament light in American football athletes over the course of a season. Journal of neurotrauma. 2016;33(19):1784-9. [DOI:10.1089/neu.2015.4295]
88. Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88(19):1788-94. [DOI:10.1212/WNL.0000000000003912]
89. Wirsching A, Chen Z, Bevilacqua ZW, Huibregtse ME, Kawata K. Association of acute increase in plasma neurofilament light with repetitive subconcussive head impacts: a pilot randomized control trial. Journal of neurotrauma. 2019;36(4):548-53. [DOI:10.1089/neu.2018.5836]
90. Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. Journal of neuroinflammation. 2012;9(1):1-9. [DOI:10.1186/1742-2094-9-279]
91. Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, et al. Degradomics in neurotrauma: profiling traumatic brain injury. Neuroproteomics: Methods and Protocols. 2017:65-99. [DOI:10.1007/978-1-4939-6952-4_4]
92. Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J. Potential use of calpain inhibitors as brain injury therapy. 2015.
93. Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PloS one. 2014;9(3):e92698. [DOI:10.1371/journal.pone.0092698]
94. Wang K, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio A, et al. Plasma Anti-Glial Fibrillary Acidic Protein (GFAP) Autoantibody Levels During the Acute and Chronic Phases of Traumatic Brain Injury-A TRACK-TBI Pilot Study. Journal of neurotrauma. 2015. [DOI:10.1089/neu.2015.3881]
95. Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Frontiers in cellular neuroscience. 2017;11:55. [DOI:10.3389/fncel.2017.00055]
96. Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, et al. Extracellular vesicle proteins and microRNAs as biomarkers for traumatic brain injury. Frontiers in Neurology. 2020;11:663. [DOI:10.3389/fneur.2020.00663]
97. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307. [DOI:10.3390/cells8040307]
98. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. New England Journal of Medicine. 2018;379(10):958-66. [DOI:10.1056/NEJMra1704286]
99. Ohmichi T, Mitsuhashi M, Tatebe H, Kasai T, El-Agnaf OMA, Tokuda T. Quantification of brain-derived extracellular vesicles in plasma as a biomarker to diagnose Parkinson's and related diseases. Parkinsonism & related disorders. 2019;61:82-7. [DOI:10.1016/j.parkreldis.2018.11.021]
100. Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, et al. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. The FASEB Journal. 2018;32(1):512-28. [DOI:10.1096/fj.201700673r]
101. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. Journal of neurosurgery. 2015;122(4):856-67. [DOI:10.3171/2014.11.JNS14770]
102. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry international. 2017;111:69-81. [DOI:10.1016/j.neuint.2016.08.003]
103. Flynn S, Leete J, Shahim P, Pattinson C, Guedes VA, Lai C, et al. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury. Scientific Reports. 2021;11(1):3896. [DOI:10.1038/s41598-021-82875-0]
104. Kawata K, Mitsuhashi M, Aldret R. A preliminary report on brain-derived extracellular vesicle as novel blood biomarkers for sport-related concussions. Frontiers in neurology. 2018;9:239. [DOI:10.3389/fneur.2018.00239]
105. Giza CC, Hovda DAJN. The new neurometabolic cascade of concussion. 2014;75(suppl_4):S24-S33. [DOI:10.1227/NEU.0000000000000505]
106. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(0 4):S24.-s33. [DOI:10.1227/NEU.0000000000000505]
107. Baslow MH. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochemical research. 2003;28:941-53. [DOI:10.1023/A:1023250721185]
108. Gardner A, Iverson GL, Stanwell P. A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion. Journal of neurotrauma. 2014;31(1):1-18. [DOI:10.1089/neu.2013.3079]
109. Bittšanský M, Výbohová D, Dobrota D. Proton magnetic resonance spectroscopy and its diagnostically important metabolites in the brain. General physiology and biophysics. 2012;31(1):101-12. [DOI:10.4149/gpb_2012_007]
110. Harris JL, Yeh H-W, Choi I-Y, Lee P, Berman NE, Swerdlow RH, et al. Altered neurochemical profile after traumatic brain injury: 1H-MRS biomarkers of pathological mechanisms. Journal of Cerebral Blood Flow & Metabolism. 2012;32(12):2122-34. [DOI:10.1038/jcbfm.2012.114]
111. Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, et al. Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatric research. 2004;56(4):630-8. [DOI:10.1203/01.PDR.0000139928.60530.7D]
112. Manning KY, Schranz A, Bartha R, Dekaban GA, Barreira C, Brown A, et al. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology. 2017;89(21):2157-66. [DOI:10.1212/WNL.0000000000004669]
113. Daley M, Dekaban G, Bartha R, Brown A, Stewart TC, Doherty T, et al. Metabolomics profiling of concussion in adolescent male hockey players: a novel diagnostic method. Metabolomics. 2016;12:1-9. [DOI:10.1007/s11306-016-1131-5]
114. Miller MR, Robinson M, Bartha R, Charyk Stewart T, Fischer L, Dekaban GA, et al. Concussion acutely decreases plasma glycerophospholipids in adolescent male athletes. Journal of Neurotrauma. 2021;38(12):1608-14. [DOI:10.1089/neu.2020.7125]
115. Hu D, Zhang Y. Circular RNA HIPK3 promotes glioma progression by binding to miR-124-3p. Gene. 2019;690:81-9. [DOI:10.1016/j.gene.2018.11.073]
116. Zhou Y, Deng J, Chu X, Zhao Y, Guo Y. Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer's disease. Journal of Alzheimer's Disease. 2019; 67(2): 571-81. [DOI:10.3233/JAD-181053]
117. Redell JB, Moore AN, Ward III NH, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. Journal of neurotrauma. 2010;27(12):2147-56. [DOI:10.1089/neu.2010.1481]
118. Ge X, Guo M, Hu T, Li W, Huang S, Yin Z, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after rmTBI. Molecular Therapy. 2020;28(2):503-22. [DOI:10.1016/j.ymthe.2019.11.017]
119. Wang P, Ma H, Zhang Y, Zeng R, Yu J, Liu R, et al. Plasma exosome-derived microRNAs as novel biomarkers of traumatic brain injury in rats. International journal of medical sciences. 2020;17(4):437. [DOI:10.7150/ijms.39667]
120. Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, Kelso ML, et al. Traumatic brain injury increases levels of miR‐21 in extracellular vesicles: implications for neuroinflammation. FEBS open bio. 2016;6(8):835-46. [DOI:10.1002/2211-5463.12092]
121. Lanzino M, Maris P, Sirianni R, Barone I, Casaburi I, Chimento A, et al. DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell death & disease. 2013;4(7):e724-e. [DOI:10.1038/cddis.2013.235]
122. Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal microRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. International journal of molecular sciences. 2020;21(7):2312. [DOI:10.3390/ijms21072312]
123. Bhomia M, Balakathiresan NS, Wang KK, Papa L, Maheshwari RK. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Scientific reports. 2016;6(1):1-12. [DOI:10.1038/srep28148]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabet H S, Sabet F S, Shojaei K, Yaghoubi F, Jafarian M. Biomarkers in Traumatic Brain Injury. Shefaye Khatam 2022; 11 (1) :133-153
URL: http://shefayekhatam.ir/article-1-2362-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (Winter 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 45 queries by YEKTAWEB 4642