[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..

..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 11، شماره 3 - ( تابستان 1402 ) ::
دوره 11 شماره 3 صفحات 94-81 برگشت به فهرست نسخه ها
مروری بر اثرات درمانی ترکیبات طبیعی آنتی‌اکسیدان بر بهبود اختلال طیف اوتیسم
مریم فقیه نیرسی ، اکبر حاجی زاده مقدم* ، صدیقه خانجانی جلودار ، احسان نظیفی ، فرشاد صحبت‌زاده لنبر
گروه علوم جانوری، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران ، a.hajizadeh@umz.ac.ir
چکیده:   (940 مشاهده)
مقدمه: اختلال طیف اوتیسم (ASD) یک بیماری تخریب عصبی پیش‌روندۀ چندعاملی است. این بیماری قبل از 3 سالگی با علائم اختلالات رفتاری قابل‌تشخیص است. رفتارهای تکراری و کلیشه‌ای، اختلالات تعاملات اجتماعی و ناهنجاری‌های کلامی از ویژگی‌های تشخیصی بارز اوتیسم هستند. ASD ممکن است درنتیجۀ اختلال در سیناپس‌های نورونی بخش‌های مختلف مغز مانند مخچه، هیپوکمپ، عقده‌های قاعده‌ای، آمیگدال و قشر پیش‌پیشانی ظاهر می‌‌شوند. در فرد اوتیستیک، عدم‌تعادل دینامیکی بین گونه‌های فعال اکسیژن (ROS) و گونه‌های فعال نیتروژن (RNS) دفاع آنتی‌اکسیدانی را کاهش می‌دهد. این می‌تواند از دلایل اختلالات سیناپسی در نورون‌ها در قسمت‌های مختلف مغز باشد. بدن به استرس‌اکسیداتیو با سیستم دفاعی آنتی‌اکسیدانی خود پاسخ می‌دهد؛ اما کاهش ظرفیت دفاعی و یا اختلال در فرآیندهای فیزیولوژیکی ممکن است به پاسخ‌های دفاعی نامناسبی منجر شود. تحقیقات اخیر نشان داده‌اند که تجویز ترکیبات طبیعی آنتی‌اکسیدان مانند کاروتنوئیدها، ویتامین C، فلاونوئیدها، فنل‌ها و سلنیوم می‌تواند موجب افزایش تعادل آنتی‌اکسیدانی و بهبود رفتارهای خاص در ASD شود. نتیجه‌گیری: با توجه به نقش به‌سزای استرس اکسیداتیو در آسیب‌های بافتی و پاتوفیزیولوژی ASD، استفاده از ترکیبات آنتی­‌اکسیدانی می­‌تواند یک رویکرد مفید برای بهبود شکل­ پذیری سیناپسی در مناطق مختلف مغز و بهبود علائم ASD باشد.
 
واژه‌های کلیدی: اختلال طیف اوتیسم، تعامل اجتماعی، آنتی‌اکسیدان‌ها
متن کامل [PDF 1357 kb]   (613 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: نورولوژی
فهرست منابع
1. Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci J. 2016; 19(5): 647-55. [DOI:10.1038/nn.4276]
2. O'Brien G, Pearson J. Autism and learning disability. Autism J. 2004; 8(2): 125-40. [DOI:10.1177/1362361304042718]
3. Crespi BJ. Autism, psychosis, and genomic imprinting: recent discoveries and conundrums. Curr Opin Behav Sci J. 2019; 1(25): 1-7. [DOI:10.1016/j.cobeha.2018.05.008]
4. D'Mello AM. CatherineJ.Stoodley. Cerebro-cerebellarcircuitsinautismspectrumdisorder. Front Neurosci J. 2015; 5(9): 408. [DOI:10.3389/fnins.2015.00408]
5. Hajisoltani R, A. KS, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: a possible involvement of Ih channel current. Brain Res J. 2019; 1(1708): 188-99. [DOI:10.1016/j.brainres.2018.12.011]
6. Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L. Cerebellar and Striatal Implications in Autism Spectrum Disorders: From Clinical Observations to Animal Models. Int J Mol Sci J. 2022; 23(4): 2294. [DOI:10.3390/ijms23042294]
7. Olexová L, Stefánik P, Krˇsková L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats - An animal model of autism. Neurosci Lett J. 2016; 26(629): 9-14. [DOI:10.1016/j.neulet.2016.06.035]
8. Xu P, Chen A, Li Y, Xing X, Lu H. The medial prefrontal cortex in neurological diseases. Physiol Genomics J. 2019; 51(9): 432-42. [DOI:10.1152/physiolgenomics.00006.2019]
9. Schuetze M, Park MTM, Cho LYK, MacMaster FP, Chakravarty MM, Bray SL. Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder. Neuropsychopharmacology J. 2016; 41(11): 2627-37. [DOI:10.1038/npp.2016.64]
10. Gjika E, Pal-Ghosh S, Tang A, Kirschner M, Tadvalkar G, Canady J, et al. Adaptation of operational parameters of cold atmospheric plasma for in vitro treatment of cancer cells. ACS J. 2018; 10(11): 9269-79. [DOI:10.1021/acsami.7b18653]
11. Abuaish S, Al-Otaibi NM, Abujamel TS, Alzahrani SA, Alotaibi AM, AlShawakir YA, et al. Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sci J. 2021; 11(8): 1038. [DOI:10.3390/brainsci11081038]
12. McConnell SR. Interventions to Facilitate Social Interaction for Young Children with Autism: Review of Available Research and Recommendations for Educational Intervention and Future Research. JADD. 2002; 32: 351-72.
13. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NEIM J. 2009; 44(2): 489-501. [DOI:10.1016/j.neuroimage.2008.08.039]
14. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neuro sci J. 2009; 32: 413-34. [DOI:10.1146/annurev.neuro.31.060407.125606]
15. Morakotsriwan N, Wattanathorn J, Kirisattayakul W, Chaisiwamongkol K. Autistic-Like Behaviors, Oxidative Stress Status, and Histopathological Changes in Cerebellum of Valproic Acid Rat Model of Autism Are Improved by the Combined Extract of Purple Rice and Silkworm Pupae. Oxid Med Cell Longevity J. 2016; 10. [DOI:10.1155/2016/3206561]
16. Hajizadeh Moghaddam A, Eslami A, khanjani Jelodar S, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res J. 2023; 12: 114300. [DOI:10.1016/j.bbr.2023.114300]
17. Hoher Camargo SP, Rispoli M, Ganz J, Hong ER, Davis H, Mason R. A Review of the Quality of Behaviorally-Based Intervention Research to Improve Social Interaction Skills of Children with ASD in Inclusive Settings. JADD. 2014; 44: 2096-116. [DOI:10.1007/s10803-014-2060-7]
18. Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. JNR. 2020; 98(11): 2130-47. [DOI:10.1002/jnr.24560]
19. Huang T-T, Leu D, Zou Y. Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. ABB J. 2015; 576: 2-7. [DOI:10.1016/j.abb.2015.03.014]
20. Pavăl D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev Neurosci J. 2017; 39(5): 355-60. [DOI:10.1159/000478725]
21. Silveira de Mattos BD, Pereira Soares MS, Spohr L, Pedra NS, Teixeira FC, Avila de Souza A, et al. Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. ISDN J. 2020; 80(4): 287-302. [DOI:10.1002/jdn.10025]
22. Bellani M, Calderoni S, Muratori F, Brambilla P. Brain anatomy of autism spectrum disorders II. Focus on amygdala. EPS J. 2013; 22(4): 309-12. [DOI:10.1017/S2045796013000346]
23. Salim S. Oxidative Stress and the Central Nervous System. JPET. 2017; 360(1): 201-5. [DOI:10.1124/jpet.116.237503]
24. Frith U, Happe F. Autism: beyond "theory of mind". Cogn J. 1994; 50(1-3): 115-32. [DOI:10.1016/0010-0277(94)90024-8]
25. Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. DCNS J. 2022; 14(3): 319-51. [DOI:10.31887/DCNS.2012.14.3/gdichter]
26. Murdaugh DL, Shinkareva SV, Deshpande HR, Wang J, Pennick MR, Kana RK. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity. PLOS ONE J. 2012; 7(11): e50064. [DOI:10.1371/journal.pone.0050064]
27. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Maffei L, Sale A. Brain Plasticity and Disease: A Matter of Inhibition. Neural Plast J. 2011; 11. [DOI:10.1155/2011/286073]
28. Gogolla N, Takesian AE, Feng G, Fagiolini M, Hensch TK. Sensory Integration in Mouse Insular Cortex Reflects GABA Circuit Maturation. Neuron J. 2014; 83(4): 894-905. [DOI:10.1016/j.neuron.2014.06.033]
29. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nat J. 2011; 472(7344): 437-42. [DOI:10.1038/nature09965]
30. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nat J. 2011; 477(7367): 171-8. [DOI:10.1038/nature10360]
31. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron J. 2015; 87(4): 684-98. [DOI:10.1016/j.neuron.2015.07.033]
32. Taleb A, Lin W, Xu X, Zhang G, Zhou Q-G, Naveed M, et al. Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother J. 2021; 137: 111332. [DOI:10.1016/j.biopha.2021.111322]
33. Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci J. 2018; 15(76): 1275-97. [DOI:10.1007/s00018-018-2988-4]
34. Hajizadeh Moghaddam A, Eslami A, khanjani Jelodar S, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res J. 2023; 12: 114300. [DOI:10.1016/j.bbr.2023.114300]
35. Hajizadeh Moghaddam A, Abbasalipour H, Ranjbar M, Khanjani Jelodar S. Effect of Sumac Nano-phytosome on Memory and Oxidative Stress in Valproic Acid-induced Rat Model of Autism Spectrum Disorder. Guil Uni Med Sci J. 2021; 29(4): 102-13. [DOI:10.32598/JGUMS.29.4.950.1]
36. Nabavi SM, Nabavi SF, Eslami S, Hajizadeh Moghaddam A. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food chem J. 2012; 132(2): 931-5. [DOI:10.1016/j.foodchem.2011.11.070]
37. Nabavi SF, Nabavi SM, Latifi AM, Mirzaei M, Habtemariam S, Hajizadeh Moghaddam A. Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain. Pharm Biol J. 2012; 50(11): 1380-3. [DOI:10.3109/13880209.2012.675341]
38. Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, et al. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol J. 2020; 57: 2314-32. [DOI:10.1007/s12035-019-01742-2]
39. Zarkovic K. 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med J. 2003; 24(4-5): 293-303. [DOI:10.1016/S0098-2997(03)00024-4]
40. Abdel-Salam OME, Youness ER, Mohammed NA, Abu Elhamed WA. Nuclear Factor-Kappa B and Other Oxidative Stress Biomarkers in Serum of Autistic Children. Open J Mol Integr Physiol J. 2015; 5(1): 18-27. [DOI:10.4236/ojmip.2015.51002]
41. Jouve L, Engelmann F, Noirot M, Charrier A. Evaluation of biochemical markers (sugar, proline, malonedialdehyde and ethylene) for cold sensitivity in microcuttings of two coffee species. Plant Sci J. 1993; 91(1): 109-16. [DOI:10.1016/0168-9452(93)90194-5]
42. Soguta S, Zoroglub SS, Ozyurtc H, Yılmazd HR, Ozugurluc F, Sivaslı E, et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. CCA J. 2003; 331(1-2): 111-7. [DOI:10.1016/S0009-8981(03)00119-0]
43. Gorrindo P, Lane CJ, Lee EB, McLaughlin B, Levitt P. Enrichment of Elevated Plasma F2t-Isoprostane Levels in Individuals with Autism Who Are Stratified by Presence of Gastrointestinal Dysfunction. PLOS ONE J. 2013; 8(7): e68444. [DOI:10.1371/journal.pone.0068444]
44. Cipolla CM, Lodhi IJ. Peroxisomal Dysfunction in Age-Related Diseases. Trends Endocrinol Metab J. 2017; 28(4): 297-308. [DOI:10.1016/j.tem.2016.12.003]
45. Sadat E, Javaheri SJ, Bigdeli MR, Zibaii MI, Dargahi L, Pouretemad HR. Optogenetic Stimulation of the Anterior Cingulate Cortex Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation, Caudate Putamen as a Site for Alteration. NeuroMol Med J. 2019; 21: 132-42. [DOI:10.1007/s12017-019-08526-w]
46. khoshnazar M, Farhadi Maghadam B. Neuroprotective Effect of Alpha-Pinene on Focal Cerebral Ischemia in Rats. Shefaye Khatam 2022; 10 (3) :37-47 [DOI:10.52547/shefa.10.3.37]
47. Francenia Santos-Sánchez N, R. S-C, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants. 5 ed: IntechOpen; 2019. 23-50 p. [DOI:10.5772/intechopen.85270]
48. Edge R, George Truscott T. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids-A Review. Antioxidants J. 2018; 7(1): 5. [DOI:10.3390/antiox7010005]
49. Viana CE, Bortolotto VC, Machado Araujo SM, Mustafa Dahleh MM, Machado FR, Pereira ADS, et al. Lutein-loaded nanoparticles reverse oxidative stress, apoptosis, and autism spectrum disorder-like behaviors induced by prenatal valproic acid exposure in female rats. NeuroToxicology J. 2023; 94: 223-34. [DOI:10.1016/j.neuro.2022.12.006]
50. Karimian A, Mir Mohammadrezaei F, Hajizadeh Moghadam A, Bahadori MH, Ghorbani-Anarkooli M, Asadi A, et al. Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines. Acta Histochem J. 2022; 124(1): 151832. [DOI:10.1016/j.acthis.2021.151832]
51. Al-Amin MdM, Rahman MM, Rahman Khan F, Zaman F, Mahmud Reza H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res J. 2015; 289: 112-21. [DOI:10.1016/j.bbr.2015.02.041]
52. Li F-J, Shen L, Ji H-F. Dietary Intakes of Vitamin E, Vitamin C, and β-Carotene and Risk of Alzheimer's Disease: A Meta-Analysis. JADD. 2012; 31(2): 253-8. [DOI:10.3233/JAD-2012-120349]
53. Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients J. 2017; 9(7): 659. [DOI:10.3390/nu9070659]
54. Aghighi F, Salami M, Talaei A. Effect of Prenatal Stress on Offspring's Learning, Memory and Coping Strategies. Shefaye Khatam 2019; 7 (4) :106-121 [DOI:10.29252/shefa.7.4.106]
55. Yule MS S, Wanik J, Holm EM, Bruder MB, Shanley E, Sherman CQ, et al. Nutritional Deficiency Disease Secondary to ARFID Symptoms Associated with Autism and the Broad Autism Phenotype: A Qualitative Systematic Review of Case Reports and Case Series. J Acad Nutr Diet. 2021; 121(3): 467-92. [DOI:10.1016/j.jand.2020.10.017]
56. Nayan NS, Mohd Yazid MA, Nallappan K, Amran AA, Zaidi NS, Zakaria F, et al. In Vitro Modulation of Endogenous Antioxidant Enzyme Activities and Oxidative Stress in Autism Lymphoblastoid Cell Line (ALCL) by Stingless Bee Honey Treatment. Oxid Med Cell Longev J. 2020; 1-7. [DOI:10.1155/2020/4539891]
57. Pangrazzi L, Balasco L, Bozzi Y. Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants J. 2020; 9(12): 1186. [DOI:10.3390/antiox9121186]
58. Moradi H R, Taherianfard M, Rashidi M, Javid Z, Hesami S A. Protective Effects of Wheat Sprout on Acrylamide Toxicity in the Hippocampus Structure and Spatial Learning and Memory of Rat. Shefaye Khatam 2023; 11 (2) :10-19
59. Pietta P-G. Flavonoids as Antioxidants. J Nat Prod. 2000; 63(7): 1035-42. [DOI:10.1021/np9904509]
60. Hajizadeh Moghaddam A, Barari R, Khanjani Jelodar S, Hasantabar V. Neuroprotective Effects of Silymarin-Loaded Chitosan Nanoparticles on Ketamine-Induced Cognitive Disorders and Oxidative Damages in Mice Hippocampus. Shefaye Khatam 2022; 10(2): 1-2.
61. Bors W, Heller W, Michel C, Saran M. Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies. Methods Enzymol J. 1998; 186.
62. Khalaj R, Hajizadeh Moghaddam A, Zare M. Hesperetin and it nanocrystals ameliorate social behaviordeficits and oxido-inflammatory stress in rat model of autism. Int J Dev Neurosci. 2018; 69: 80-7. [DOI:10.1016/j.ijdevneu.2018.06.009]
63. Babaei M, Elmi T, Kalantari-Hesari A. Effects of Hydroalcoholic Extract of Malva Sylvestris L. on the Histological Structure of the Brain in a Mice Model of Parkinson's Disease. Shefaye Khatam 2023; 11 (2) :1-9
64. Greeson JM, Sanford B, Monti DA. St. John's wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology J. 2001; 153: 402-14. [DOI:10.1007/s002130000625]
65. Khanjani Jelodar S, Bigdeli M, Hajizadeh Moghaddam A. The Effect of Hypericin on Autism Like Behavior in Maternal Separation Animal Model: An Experimental Study. JRUMS. 2020; 19[1]: 569-78. [DOI:10.29252/jrums.19.6.569]
66. Wu H, Zhao G, Liu S, Zhang Q, Wang P, Cao Y, et al. Supplementation with selenium attenuates autism-like behaviors and improves oxidative stress, inflammation and related gene expression in an autism disease model. JNB. 2022; 107: 109034. [DOI:10.1016/j.jnutbio.2022.109034]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faghih Neiresy M, hajizadeh moghaddam A, khanjani jelodar S, nazifi E, Sohbatzadeh Lonbar F. A Review of the Therapeutic Effects of Natural Antioxidant Compounds on the Improvement of Autism Spectrum Disorder. Shefaye Khatam 2023; 11 (3) :81-94
URL: http://shefayekhatam.ir/article-1-2389-fa.html

فقیه نیرسی مریم، حاجی زاده مقدم اکبر، خانجانی جلودار صدیقه، نظیفی احسان، صحبت‌زاده لنبر فرشاد. مروری بر اثرات درمانی ترکیبات طبیعی آنتی‌اکسیدان بر بهبود اختلال طیف اوتیسم. مجله علوم اعصاب شفای خاتم. 1402; 11 (3) :81-94

URL: http://shefayekhatam.ir/article-1-2389-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 3 - ( تابستان 1402 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 53 queries by YEKTAWEB 4657