[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 12, Issue 1 (Winter 2023) ::
Shefaye Khatam 2023, 12(1): 94-110 Back to browse issues page
Underlying Mechanisms of Neuroprotective Actions of Klotho Against Cognitive Impairment in Neurodegenerative Diseases
Tahereh Ghadiri * , Maryam Azarfarin , Gholamreza Namvar , Zeynab Samnia
Department of Neuroscience and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran , ghadirit@tbzmed.ac.ir
Abstract:   (1234 Views)
Introduction: Klotho, an elixir of life, beneficially affects several bodily systems, including the brain. During the past two decades, positive effects of klotho in systemic and neurodegenerative diseases have been frequently reported. In this review, we summarized published data addressing these protective effects in neurodegenerative diseases along with associated improvement in cognitive performance. Klotho, a product of the Klotho gene, is a pluripotent protein and exists in soluble, secretary, and transmembrane forms in various types (α, β, and γ). Klotho receptor is localized in several cerebral regions, including the choroid plexus, limbic system, Purkinje cells, hippocampus, and basal ganglia. Klotho has been shown to induce anti-aging effects through the activation of several pathways. Moreover, a growing body of evidence supports its protective and cognition-enhancing effects in different Alzheimer's models. These effects mainly emerged via enhanced synaptic plasticity and clearance of amyloid beta plus improving neuronal energy balance by affecting astrocytes metabolic pathways. Growth factors-related pathways along with Wnt signaling are the most important pathways relating to Klotho functions. Klotho also promotes antioxidant systems, such as superoxide dismutase, to diminish reactive oxygen species and consequently restricts apoptotic cell death. Conclusion: Due to its low regenerative capacity, the brain is of great importance for therapeutic explorations aiming to replace dead neurons. In sum, comprehension of precise mechanism of this protein actions could be promising tool to develop Klotho based-novel therapeutic approaches for treatment of neurodegenerative diseases in the future.
 
Keywords: Alzheimer Disease, Memory, Cognition, Klotho Proteins
Full-Text [PDF 939 kb]   (336 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Molecular Neurobiology
References
1. Shabani Z, Mohammad Nejad D, Ghadiri T, Karimipour M. Evaluation of the neuroprotective effects of Vitamin E on the rat substantia nigra neural cells exposed to electromagnetic field: An ultrastructural study. Electromagn Biol Med. 2021;40:428-37. [DOI:10.1080/15368378.2021.1907404]
2. Kuro-o M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clinical Science. 2021;135:1915-27. [DOI:10.1042/CS20201453]
3. Abraham C, Mullen P, Tucker-Zhou T, Chen C, Zeldich E. Klotho is a neuroprotective and cognition-enhancing protein. Vitamins & hormones. 2016;101:215-38. [DOI:10.1016/bs.vh.2016.02.004]
4. Xu X, Liang X, Hu G, Zhang J, Lei H. Renal function and klotho gene polymorphisms among Uygur and Kazak populations in Xinjiang, China. Med Sci Monit. 2015;21:44-51. [DOI:10.12659/MSM.891213]
5. Li Q, Vo HT, Wang J, Fox-Quick S, Dobrunz LE, King GD. Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience. 2017;347:123-33. [DOI:10.1016/j.neuroscience.2017.02.006]
6. Cararo-Lopes MM, Mazucanti CHY, Scavone C, Kawamoto EM, Berwick DC. The relevance of α-KLOTHO to the central nervous system: some key questions. Ageing research reviews. 2017;36:137-48. [DOI:10.1016/j.arr.2017.03.003]
7. Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Research Reviews. 2022:101766. [DOI:10.1016/j.arr.2022.101766]
8. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocrine reviews. 2015:36:91-174. [DOI:10.1210/er.2013-1079]
9. Ananya FN, Ahammed MR, Lahori S, Parikh C, Lawrence JA, Sulachni F, et al. Neuroprotective Role of Klotho on Dementia. Cureus. 2023;15(6). [DOI:10.7759/cureus.40043]
10. Kim HK, Jeong BH. Lack of functional KL-VS polymorphism of the KLOTHO gene in the Korean population. Genet Mol Biol. 2016;39:370-3. [DOI:10.1590/1678-4685-GMB-2015-0160]
11. Luo L, Hao Q, Dong B, Yang M. The Klotho gene G-395A polymorphism and metabolic syndrome in very elderly people. BMC Geriatr. 2016;16:46. [DOI:10.1186/s12877-016-0221-6]
12. Marchelek-Mysliwiec M, Rozanski J, Ogrodowczyk A, Dutkiewicz G, Dolegowska B, Salata D, et al. The association of the Klotho polymorphism rs9536314 with parameters of calcium-phosphate metabolism in patients on long-term hemodialysis. Ren Fail. 2016;38:776-80. [DOI:10.3109/0886022X.2016.1162062]
13. Ozdem S, Yilmaz VT, Ozdem SS, Donmez L, Cetinkaya R, Suleymanlar G, et al. Is Klotho F352V Polymorphism the Missing Piece of the Bone Loss Puzzle in Renal Transplant Recipients? Pharmacology. 2015;95:271-8. [DOI:10.1159/000398812]
14. Telci D, Dogan AU, Ozbek E, Polat EC, Simsek A, Cakir SS, et al. KLOTHO gene polymorphism of GA is associated with kidney stones. Am J Nephrol. 2011;33:337-43. [DOI:10.1159/000325505]
15. Yilmaz VT, Ozdem S, Donmez L, Cetinkaya R, Suleymanlar G, Ersoy FF. FGF-23, alpha-Klotho Gene Polymorphism and Their Relationship with the Markers of Bone Metabolism in Chronic Peritoneal Dialysis Patients. Eurasian J Med. 2015;47:115-25. [DOI:10.5152/eurasianjmed.2015.93]
16. Li D, Jing D, Liu Z, Chen Y, Huang F, Behnisch T. Enhanced Expression of Secreted alpha-Klotho in the Hippocampus Alters Nesting Behavior and Memory Formation in Mice. Front Cell Neurosci. .2019;13:133. [DOI:10.3389/fncel.2019.00133]
17. Kim J-H, Hwang K-H, Park K-S, Kong ID, Cha S-K. Biological role of anti-aging protein Klotho. Journal of lifestyle medicine. 2015;5:1. [DOI:10.15280/jlm.2015.5.1.1]
18. Birdi A, Tomo S, Yadav D, Sharma P, Nebhinani N, Mitra P, et al. Role of Klotho Protein in Neuropsychiatric Disorders: A Narrative Review. Indian Journal of Clinical Biochemistry. 2023;38:13-21. [DOI:10.1007/s12291-022-01078-0]
19. Ananya FN, Ahammed MR, Lahori S, Parikh C, Lawrence JA, Sulachni F, et al. Neuroprotective Role of Klotho on Dementia. Cureus. 2023;15:e40043. [DOI:10.7759/cureus.40043]
20. Vo HT, Laszczyk AM, King GD. Klotho, the key to healthy brain aging? Brain Plasticity. 2018;3:183-94. [DOI:10.3233/BPL-170057]
21. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;803. [DOI:10.1126/science.1143578]
22. Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annual review of medicine. 2010;61:91-104. [DOI:10.1146/annurev.med.051308.111339]
23. Leon J, Moreno AJ, Garay BI, Chalkley RJ, Burlingame AL, Wang D, et al. Peripheral elevation of a klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice. Cell reports. 2017;20:1360-71. [DOI:10.1016/j.celrep.2017.07.024]
24. Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, et al. α-Klotho expression in human tissues. The Journal of Clinical Endocrinology & Metabolism. 2015;100:1308-18. [DOI:10.1210/jc.2015-1800]
25. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia. 2008;56:106-17. [DOI:10.1002/glia.20593]
26. Laszczyk AM, Fox-Quick S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche L, et al. Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiology of aging. 2017;59:41-54. [DOI:10.1016/j.neurobiolaging.2017.07.008]
27. Bahlakeh G, Gorji A, Soltani H, Ghadiri T. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: Lessons from animal models. J Cell Physiol. 2021;236:806-23. [DOI:10.1002/jcp.29908]
28. Nassireslami E, Nikbin P, Payandemehr B, Amini E, Mohammadi M, Vakilzadeh G, et al. A cAMP analog reverses contextual and tone memory deficits induced by a PKA inhibitor in Pavlovian fear conditioning. Pharmacol Biochem Behav. 2013;105:177-82. [DOI:10.1016/j.pbb.2013.02.016]
29. Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, et al. Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect. 2020;10:157-69. [DOI:10.1089/brain.2019.0733]
30. Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, et al. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci. 2023;15:1281581. [DOI:10.3389/fnagi.2023.1281581]
31. Chen LK. Editorial: Aging, Body Composition, and Cognitive Decline: Shared and Unique Characteristics. J Nutr Health Aging. 2023;27:929-31. [DOI:10.1007/s12603-023-2022-x]
32. Prigatano GP, Russell S, Meites TM. Studying lack of awareness of cognitive decline in neurodegenerative diseases requires measures of both anosognosia and denial. Front Aging Neurosci. 2023;15:1325231. [DOI:10.3389/fnagi.2023.1325231]
33. Kanbay M, Copur S, Ozbek L, Mutlu A, Cejka D, Ciceri P, et al. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J. 2024;17:sfad276. [DOI:10.1093/ckj/sfad276]
34. Abulizi P, Zhou XH, Keyimu K, Luo M, Jin FQ. Correlation between KLOTHO gene and mild cognitive impairment in the Uygur and Han populations of Xinjiang. Oncotarget. 2017;8:75174-85. [DOI:10.18632/oncotarget.20655]
35. De Vries CF, Staff RT, Noble KG, Muetzel RL, Vernooij MW, White T, et al. Klotho gene polymorphism, brain structure and cognition in early-life development. Brain Imaging Behav. 2020;14:213-25. [DOI:10.1007/s11682-018-9990-1]
36. Xiang T, Luo X, Zeng C, Li S, Ma M, Wu Y. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Research. 2021;1772:147668. [DOI:10.1016/j.brainres.2021.147668]
37. Kundu P, Zimmerman B, Quinn JF, Kaye J, Mattek N, Westaway SK, et al. Serum Levels of alpha-Klotho Are Correlated with Cerebrospinal Fluid Levels and Predict Measures of Cognitive Function. J Alzheimers Dis. 2022;86(3):1471-81. [DOI:10.3233/JAD-215719]
38. Shardell M, Semba RD, Rosano C, Kalyani RR, Bandinelli S, Chia CW, et al. Plasma Klotho and Cognitive Decline in Older Adults: Findings From the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2016;71:677-82. [DOI:10.1093/gerona/glv140]
39. Scazzone C, Agnello L, Sasso BL, Ragonese P, Bivona G, Realmuto S, et al. Klotho and vitamin D in multiple sclerosis: an Italian study. Arch Med Sci. 2020;16:842-7. [DOI:10.5114/aoms.2019.86969]
40. Xiang T, Luo X, Zeng C, Li S, Ma M, Wu Y. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Res. 2021;1772:147668. [DOI:10.1016/j.brainres.2021.147668]
41. Teocchi MA, Ferreira AE, da Luz de Oliveira EP, Tedeschi H, D'Souza-Li L. Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients. J Neuroinflammation. 2013;10:53. [DOI:10.1186/1742-2094-10-53]
42. Gupta S, Moreno AJ, Wang D, Leon J, Chen C, Hahn O, et al. KL1 domain of longevity factor klotho mimics the metabolome of cognitive stimulation and enhances cognition in young and aging mice. Journal of Neuroscience. 2022;42:40:16-25. [DOI:10.1523/JNEUROSCI.2458-21.2022]
43. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. Journal of Neuroscience. 2015;35:2358-71. [DOI:10.1523/JNEUROSCI.5791-12.2015]
44. Dias GP, Murphy T, Stangl D, Ahmet S, Morisse B, Nix A, et al. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Molecular psychiatry. 2021;26:6365-79. [DOI:10.1038/s41380-021-01102-4]
45. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. The FASEB Journal. 2003;17(1):50-2. [DOI:10.1096/fj.02-0448fje]
46. Linghui D, Simin Y, Zilong Z, Yuxiao L, Shi Q, Birong D. The relationship between serum klotho and cognitive performance in a nationally representative sample of US adults. Frontiers in Aging Neuroscience. 2023;15:1053390. [DOI:10.3389/fnagi.2023.1053390]
47. Murman DL. The Impact of Age on Cognition. Semin Hear. 2015;36:111-21. [DOI:10.1055/s-0035-1555115]
48. Castner SA, Gupta S, Wang D, Moreno AJ, Park C, Chen C, et al. Longevity factor klotho enhances cognition in aged nonhuman primates. Nat Aging. 2023;3:931-7. [DOI:10.1038/s43587-023-00441-x]
49. Sanz B, Arrieta H, Rezola-Pardo C, Fernandez-Atutxa A, Garin-Balerdi J, Arizaga N, et al. Low serum klotho concentration is associated with worse cognition, psychological components of frailty, dependence, and falls in nursing home residents. Sci Rep. 2021;11:9098. [DOI:10.1038/s41598-021-88455-6]
50. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829-33. [DOI:10.1126/science.1112766]
51. Chen C-D, Li Y, Chen AK, Rudy MA, Nasse JS, Zeldich E, et al. Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho. PLoS One. 2020:e0226382. [DOI:10.1371/journal.pone.0226382]
52. Zhou HJ, Zeng CY, Yang TT, Long FY, Kuang X, Du JR. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice. Life Sci. 2018;200:56-62. [DOI:10.1016/j.lfs.2018.03.027]
53. Chen C-D, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, et al. The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. Journal of Neuroscience. 2013;33(5):1927-39. [DOI:10.1523/JNEUROSCI.2080-12.2013]
54. Ruis J. [Alzheimer type dementia]. Rev Infirm. 2008.
55. Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, et al. Alzheimer's Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci. 2022;14:742408. [DOI:10.3389/fnagi.2022.742408]
56. Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR. Klotho overexpression improves amyloid-beta clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13239. [DOI:10.1111/acel.13239]
57. Long F-Y, Shi M-Q, Zhou H-J, Liu D-L, Sang N, Du J-R. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice. European Journal of Pharmacology. 2018;820:198-205. [DOI:10.1016/j.ejphar.2017.12.019]
58. Zeng C-Y, Yang T-T, Zhou H-J, Zhao Y, Kuang X, Duan W, et al. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer's disease-like pathology and cognitive deficits in mice. Neurobiology of aging. 2019;78:18-28. [DOI:10.1016/j.neurobiolaging.2019.02.003]
59. Li C, Siragy HM. (Pro) renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. American Journal Of Physiology-Endocrinology And Metabolism. 2015;309:E302-E10. [DOI:10.1152/ajpendo.00603.2014]
60. Yossef RR, Al-Yamany MF, Saad MA, El-Sahar AE. Neuroprotective effects of vildagliptin on drug induced Alzheimer's disease in rats with metabolic syndrome: Role of hippocampal klotho and AKT signaling pathways. Eur J Pharmacol. 2020;889:173612. [DOI:10.1016/j.ejphar.2020.173612]
61. Adeli S, Zahmatkesh M, Tavoosidana G, Karimian M, Hassanzadeh G. Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog Neuropsychopharmacol Biol Psychiatry. 2017;87:72-94. [DOI:10.1016/j.pnpbp.2016.09.009]
62. Kakar RS, Pastor JV, Moe OW, Ambrosio F, Castaldi D, Sanders LH. Peripheral Klotho and Parkinson's Disease. Mov Disord. 2021;36:1274-6. [DOI:10.1002/mds.28530]
63. Sancesario GM, Di Lazzaro G, Grillo P, Biticchi B, Giannella E, Alwardat M, et al. Biofluids profile of alpha-Klotho in patients with Parkinson's disease. Parkinsonism Relat Disord. 2021;90:62-4. [DOI:10.1016/j.parkreldis.2021.08.004]
64. Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, Haghani S, Zeinali H, Roghani M. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson's disease: Involvement of PKA/CaMKII/CREB signaling. Exp Gerontol. 2017;100:70-6. [DOI:10.1016/j.exger.2017.10.023]
65. Pathare GV, Shalia KK. Klotho: an emerging factor in neurodegenerative diseases. Biomedical Research Journal. 2019;6:1. [DOI:10.4103/BMRJ.BMRJ_3_19]
66. Zeldich E, Chen C-D, Boden E, Howat B, Nasse JS, Zeldich D, et al. Klotho is neuroprotective in the Superoxide Dismutase (SOD1 G93A) mouse model of ALS. Journal of Molecular Neuroscience. 2019;69:264-85. [DOI:10.1007/s12031-019-01356-2]
67. Karami M, Mehrabi F, Allameh A, Pahlevan Kakhki M, Amiri M, Emami Aleagha MS. Klotho gene expression decreases in peripheral blood mononuclear cells (PBMCs) of patients with relapsing-remitting multiple sclerosis. J Neurol Sci. 2017;381:305-7. [DOI:10.1016/j.jns.2017.09.012]
68. Emami Aleagha MS, Siroos B, Ahmadi M, Balood M, Palangi A, Haghighi AN, et al. Decreased concentration of Klotho in the cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 2015;281:5-8. [DOI:10.1016/j.jneuroim.2015.02.004]
69. Ahmadi M, Emami Aleagha MS, Harirchian MH, Yarani R, Tavakoli F, Siroos B. Multiple sclerosis influences on the augmentation of serum Klotho concentration. J Neurol Sci. 2016;362:69-72. [DOI:10.1016/j.jns.2016.01.012]
70. Yamate-Morgan H, Lauderdale K, Horeczko J, Merchant U, Tiwari-Woodruff SK. Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin. Neuroscience. 2019;406:667-83. [DOI:10.1016/j.neuroscience.2019.01.038]
71. Zeldich E, Chen C-D, Colvin TA, Bove-Fenderson EA, Liang J, Zhou TBT, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. Journal of Biological Chemistry. 2014;289:24700-15. [DOI:10.1074/jbc.M114.567321]
72. Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, et al. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology. 2019;92:e1878-e89. [DOI:10.1212/WNL.0000000000007323]
73. Neitzel J, Franzmeier N, Rubinski A, Dichgans M, Brendel M, Alzheimer's Disease Neuroimaging I, et al. KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. Nat Commun. 2021;12:382. [DOI:10.1038/s41467-021-23755-z]
74. Xiang T, Luo X, Ye L, Huang H, Wu Y. Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav. 2022;128:108509. [DOI:10.1016/j.yebeh.2021.108509]
75. Torbus-Paluszczak M, Bartman W, Adamczyk-Sowa M. Klotho protein in neurodegenerative disorders. Neurological Sciences. 2018;39:1677-82. [DOI:10.1007/s10072-018-3496-x]
76. Wolf EJ, Morrison FG, Sullivan DR, Logue MW, Guetta RE, Stone A, et al. The goddess who spins the thread of life: Klotho, psychiatric stress, and accelerated aging. Brain Behav Immun. 2019;80:193-203. [DOI:10.1016/j.bbi.2019.03.007]
77. Sedighi M, Baluchnejadmojarad T, Afshin-Majd S, Amiri M, Aminzade M, Roghani M. Anti-aging Klotho Protects SH-SY5Y Cells Against Amyloid beta1-42 Neurotoxicity: Involvement of Wnt1/pCREB/Nrf2/HO-1 Signaling. J Mol Neurosci. 2021;71:19-27. [DOI:10.1007/s12031-020-01621-9]
78. Cheng M-F, Chen L-J, Niu H-S, Yang T-T, Lin K-C, Cheng J-T. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells. Acta Neurobiol Exp (Wars). 2015;75:60-71. [DOI:10.55782/ane-2015-2016]
79. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15. [DOI:10.1074/jbc.M114.567321]
80. Chen C-D, Zeldich E, Li Y, Yuste A, Abraham CR. Activation of the anti-aging and cognition-enhancing gene klotho by CRISPR-dCas9 transcriptional effector complex. Journal of Molecular Neuroscience. 2018;64:175-84. [DOI:10.1007/s12031-017-1011-0]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghadiri T, Azarfarin M, Namvar G, Samnia Z. Underlying Mechanisms of Neuroprotective Actions of Klotho Against Cognitive Impairment in Neurodegenerative Diseases. Shefaye Khatam 2023; 12 (1) :94-110
URL: http://shefayekhatam.ir/article-1-2461-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 1 (Winter 2023) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4660