مکانیزمهای دخیل در نقش حفاظتی کلوتو در مقابل اختلالات شناختی در بیماریهای تحلیلبرنده عصبی
|
طاهره قدیری* ، مریم آذرفرین ، غلامرضا نامور ، زینب سامنیا |
گروه علوم اعصاب و شناخت، دانشکده علوم نوین پزشکی، دانشگاه علوم پزشکی تبریز، تبریز، ایران ، ghadirit@tbzmed.ac.ir |
|
چکیده: (1103 مشاهده) |
مقدمه: کلوتوی بهعنوان یک اکسیر ضدپیری اثرات مفیدی بر بیشتر دستگاههای بدن از جمله مغز دارد. در دو دهه اخیر گزارشات زیادی مبنی بر اثرات مفید کلوتو در بسیاری از بیماریهای عمومی و نیز عصبی منتشر شده است. در مقاله حاضر، ما مجموعه گزارشات انتشار یافته در خصوص اثرات حفاظتی کلوتو در بیماریهای تحلیلبرنده عصبی را به همراه بهبود عملکرد شناختی آنها خلاصه نمودیم. کلوتو محصول ژن (KL)، پروتئین پلوروی پوتنتی است که بصورت محلول، ترشحی و عرض غشایی و در فرمهای مختلف (آلفا، بتا، و گاما) وجود دارد. گیرنده کلوتو در بیشتر قسمتهای مخ، شامل شبکه کوروئید مغز، بخشهای مختلف سیستم لیمبیک، سلولهای پورکنژ، هیپوکامپ و اجسام قاعدهای بیان میشود. نشان داده شده است که این پروتئین از طریق فعال کردن مسیرهای متعدد اثرات ضدپیری القا میکند. همچنین گزارشات قابل توجهی مبنی بر نقش کلوتو در درمان و پیشگیری از بیماری آلزایمر و بهبود عملکرد شناختی در مدلهای پیش بالینی وجود دارد. این اثرات غالباً بواسطه افزایش پلاستیسیته سیناپسی و پاکسازی آمیلوئید بتا و همچنین بهبود ذخیره انرژی نورونها با اثر بر روی مسیرهای متابولیکی آستروسیتها رخ میدهد. مسیر فاکتورهای رشد وWnt مهمترین مسیرهای واسط اثرات کلوتو هستند. کلوتو همچنین از طریق تقویت دستگاه آنتیاکسیدانی با افزایش فعالیت آنتیاکسیدانهایی نظیر سوپراکسیداز دیسموتاز و مهار گونههای واکنشی اکسیژن میزان مرگ آپوپتوتیک نورونی را کاهش میدهد. نتیجهگیری: مغز بدلیل قابلیت بسیار پایین در جایگزین کردن نورونهای از دست رفته، در تحقیقات پیشرو درمانی حائز اهمیت بالایی است. در مجموع، فهم چگونگی دقیق عملکرد این پروتئین میتواند ابزار امیدبخشی جهت ایجاد پروتکلهای درمانی جدید مبتنی بر کلوتو برای درمان بیماریهای تحلیلبرنده عصبی در آیندهای نزدیک فراهم نماید.
|
|
واژههای کلیدی: بیماری آلزایمر، حافظه، شناخت، پروتیینهای کلوتو |
|
متن کامل [PDF 939 kb]
(267 دریافت)
|
نوع مطالعه: مروری |
موضوع مقاله:
نوروبيولوژي مولكولي
|
|
|
|
|
فهرست منابع |
1. Shabani Z, Mohammad Nejad D, Ghadiri T, Karimipour M. Evaluation of the neuroprotective effects of Vitamin E on the rat substantia nigra neural cells exposed to electromagnetic field: An ultrastructural study. Electromagn Biol Med. 2021;40:428-37. [ DOI:10.1080/15368378.2021.1907404] 2. Kuro-o M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clinical Science. 2021;135:1915-27. [ DOI:10.1042/CS20201453] 3. Abraham C, Mullen P, Tucker-Zhou T, Chen C, Zeldich E. Klotho is a neuroprotective and cognition-enhancing protein. Vitamins & hormones. 2016;101:215-38. [ DOI:10.1016/bs.vh.2016.02.004] 4. Xu X, Liang X, Hu G, Zhang J, Lei H. Renal function and klotho gene polymorphisms among Uygur and Kazak populations in Xinjiang, China. Med Sci Monit. 2015;21:44-51. [ DOI:10.12659/MSM.891213] 5. Li Q, Vo HT, Wang J, Fox-Quick S, Dobrunz LE, King GD. Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience. 2017;347:123-33. [ DOI:10.1016/j.neuroscience.2017.02.006] 6. Cararo-Lopes MM, Mazucanti CHY, Scavone C, Kawamoto EM, Berwick DC. The relevance of α-KLOTHO to the central nervous system: some key questions. Ageing research reviews. 2017;36:137-48. [ DOI:10.1016/j.arr.2017.03.003] 7. Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Research Reviews. 2022:101766. [ DOI:10.1016/j.arr.2022.101766] 8. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocrine reviews. 2015:36:91-174. [ DOI:10.1210/er.2013-1079] 9. Ananya FN, Ahammed MR, Lahori S, Parikh C, Lawrence JA, Sulachni F, et al. Neuroprotective Role of Klotho on Dementia. Cureus. 2023;15(6). [ DOI:10.7759/cureus.40043] 10. Kim HK, Jeong BH. Lack of functional KL-VS polymorphism of the KLOTHO gene in the Korean population. Genet Mol Biol. 2016;39:370-3. [ DOI:10.1590/1678-4685-GMB-2015-0160] 11. Luo L, Hao Q, Dong B, Yang M. The Klotho gene G-395A polymorphism and metabolic syndrome in very elderly people. BMC Geriatr. 2016;16:46. [ DOI:10.1186/s12877-016-0221-6] 12. Marchelek-Mysliwiec M, Rozanski J, Ogrodowczyk A, Dutkiewicz G, Dolegowska B, Salata D, et al. The association of the Klotho polymorphism rs9536314 with parameters of calcium-phosphate metabolism in patients on long-term hemodialysis. Ren Fail. 2016;38:776-80. [ DOI:10.3109/0886022X.2016.1162062] 13. Ozdem S, Yilmaz VT, Ozdem SS, Donmez L, Cetinkaya R, Suleymanlar G, et al. Is Klotho F352V Polymorphism the Missing Piece of the Bone Loss Puzzle in Renal Transplant Recipients? Pharmacology. 2015;95:271-8. [ DOI:10.1159/000398812] 14. Telci D, Dogan AU, Ozbek E, Polat EC, Simsek A, Cakir SS, et al. KLOTHO gene polymorphism of GA is associated with kidney stones. Am J Nephrol. 2011;33:337-43. [ DOI:10.1159/000325505] 15. Yilmaz VT, Ozdem S, Donmez L, Cetinkaya R, Suleymanlar G, Ersoy FF. FGF-23, alpha-Klotho Gene Polymorphism and Their Relationship with the Markers of Bone Metabolism in Chronic Peritoneal Dialysis Patients. Eurasian J Med. 2015;47:115-25. [ DOI:10.5152/eurasianjmed.2015.93] 16. Li D, Jing D, Liu Z, Chen Y, Huang F, Behnisch T. Enhanced Expression of Secreted alpha-Klotho in the Hippocampus Alters Nesting Behavior and Memory Formation in Mice. Front Cell Neurosci. .2019;13:133. [ DOI:10.3389/fncel.2019.00133] 17. Kim J-H, Hwang K-H, Park K-S, Kong ID, Cha S-K. Biological role of anti-aging protein Klotho. Journal of lifestyle medicine. 2015;5:1. [ DOI:10.15280/jlm.2015.5.1.1] 18. Birdi A, Tomo S, Yadav D, Sharma P, Nebhinani N, Mitra P, et al. Role of Klotho Protein in Neuropsychiatric Disorders: A Narrative Review. Indian Journal of Clinical Biochemistry. 2023;38:13-21. [ DOI:10.1007/s12291-022-01078-0] 19. Ananya FN, Ahammed MR, Lahori S, Parikh C, Lawrence JA, Sulachni F, et al. Neuroprotective Role of Klotho on Dementia. Cureus. 2023;15:e40043. [ DOI:10.7759/cureus.40043] 20. Vo HT, Laszczyk AM, King GD. Klotho, the key to healthy brain aging? Brain Plasticity. 2018;3:183-94. [ DOI:10.3233/BPL-170057] 21. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;803. [ DOI:10.1126/science.1143578] 22. Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annual review of medicine. 2010;61:91-104. [ DOI:10.1146/annurev.med.051308.111339] 23. Leon J, Moreno AJ, Garay BI, Chalkley RJ, Burlingame AL, Wang D, et al. Peripheral elevation of a klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice. Cell reports. 2017;20:1360-71. [ DOI:10.1016/j.celrep.2017.07.024] 24. Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, et al. α-Klotho expression in human tissues. The Journal of Clinical Endocrinology & Metabolism. 2015;100:1308-18. [ DOI:10.1210/jc.2015-1800] 25. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia. 2008;56:106-17. [ DOI:10.1002/glia.20593] 26. Laszczyk AM, Fox-Quick S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche L, et al. Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiology of aging. 2017;59:41-54. [ DOI:10.1016/j.neurobiolaging.2017.07.008] 27. Bahlakeh G, Gorji A, Soltani H, Ghadiri T. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: Lessons from animal models. J Cell Physiol. 2021;236:806-23. [ DOI:10.1002/jcp.29908] 28. Nassireslami E, Nikbin P, Payandemehr B, Amini E, Mohammadi M, Vakilzadeh G, et al. A cAMP analog reverses contextual and tone memory deficits induced by a PKA inhibitor in Pavlovian fear conditioning. Pharmacol Biochem Behav. 2013;105:177-82. [ DOI:10.1016/j.pbb.2013.02.016] 29. Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, et al. Theta Oscillations Through Hippocampal/Prefrontal Pathway: Importance in Cognitive Performances. Brain Connect. 2020;10:157-69. [ DOI:10.1089/brain.2019.0733] 30. Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, et al. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci. 2023;15:1281581. [ DOI:10.3389/fnagi.2023.1281581] 31. Chen LK. Editorial: Aging, Body Composition, and Cognitive Decline: Shared and Unique Characteristics. J Nutr Health Aging. 2023;27:929-31. [ DOI:10.1007/s12603-023-2022-x] 32. Prigatano GP, Russell S, Meites TM. Studying lack of awareness of cognitive decline in neurodegenerative diseases requires measures of both anosognosia and denial. Front Aging Neurosci. 2023;15:1325231. [ DOI:10.3389/fnagi.2023.1325231] 33. Kanbay M, Copur S, Ozbek L, Mutlu A, Cejka D, Ciceri P, et al. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J. 2024;17:sfad276. [ DOI:10.1093/ckj/sfad276] 34. Abulizi P, Zhou XH, Keyimu K, Luo M, Jin FQ. Correlation between KLOTHO gene and mild cognitive impairment in the Uygur and Han populations of Xinjiang. Oncotarget. 2017;8:75174-85. [ DOI:10.18632/oncotarget.20655] 35. De Vries CF, Staff RT, Noble KG, Muetzel RL, Vernooij MW, White T, et al. Klotho gene polymorphism, brain structure and cognition in early-life development. Brain Imaging Behav. 2020;14:213-25. [ DOI:10.1007/s11682-018-9990-1] 36. Xiang T, Luo X, Zeng C, Li S, Ma M, Wu Y. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Research. 2021;1772:147668. [ DOI:10.1016/j.brainres.2021.147668] 37. Kundu P, Zimmerman B, Quinn JF, Kaye J, Mattek N, Westaway SK, et al. Serum Levels of alpha-Klotho Are Correlated with Cerebrospinal Fluid Levels and Predict Measures of Cognitive Function. J Alzheimers Dis. 2022;86(3):1471-81. [ DOI:10.3233/JAD-215719] 38. Shardell M, Semba RD, Rosano C, Kalyani RR, Bandinelli S, Chia CW, et al. Plasma Klotho and Cognitive Decline in Older Adults: Findings From the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2016;71:677-82. [ DOI:10.1093/gerona/glv140] 39. Scazzone C, Agnello L, Sasso BL, Ragonese P, Bivona G, Realmuto S, et al. Klotho and vitamin D in multiple sclerosis: an Italian study. Arch Med Sci. 2020;16:842-7. [ DOI:10.5114/aoms.2019.86969] 40. Xiang T, Luo X, Zeng C, Li S, Ma M, Wu Y. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Res. 2021;1772:147668. [ DOI:10.1016/j.brainres.2021.147668] 41. Teocchi MA, Ferreira AE, da Luz de Oliveira EP, Tedeschi H, D'Souza-Li L. Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients. J Neuroinflammation. 2013;10:53. [ DOI:10.1186/1742-2094-10-53] 42. Gupta S, Moreno AJ, Wang D, Leon J, Chen C, Hahn O, et al. KL1 domain of longevity factor klotho mimics the metabolome of cognitive stimulation and enhances cognition in young and aging mice. Journal of Neuroscience. 2022;42:40:16-25. [ DOI:10.1523/JNEUROSCI.2458-21.2022] 43. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. Journal of Neuroscience. 2015;35:2358-71. [ DOI:10.1523/JNEUROSCI.5791-12.2015] 44. Dias GP, Murphy T, Stangl D, Ahmet S, Morisse B, Nix A, et al. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Molecular psychiatry. 2021;26:6365-79. [ DOI:10.1038/s41380-021-01102-4] 45. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. The FASEB Journal. 2003;17(1):50-2. [ DOI:10.1096/fj.02-0448fje] 46. Linghui D, Simin Y, Zilong Z, Yuxiao L, Shi Q, Birong D. The relationship between serum klotho and cognitive performance in a nationally representative sample of US adults. Frontiers in Aging Neuroscience. 2023;15:1053390. [ DOI:10.3389/fnagi.2023.1053390] 47. Murman DL. The Impact of Age on Cognition. Semin Hear. 2015;36:111-21. [ DOI:10.1055/s-0035-1555115] 48. Castner SA, Gupta S, Wang D, Moreno AJ, Park C, Chen C, et al. Longevity factor klotho enhances cognition in aged nonhuman primates. Nat Aging. 2023;3:931-7. [ DOI:10.1038/s43587-023-00441-x] 49. Sanz B, Arrieta H, Rezola-Pardo C, Fernandez-Atutxa A, Garin-Balerdi J, Arizaga N, et al. Low serum klotho concentration is associated with worse cognition, psychological components of frailty, dependence, and falls in nursing home residents. Sci Rep. 2021;11:9098. [ DOI:10.1038/s41598-021-88455-6] 50. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829-33. [ DOI:10.1126/science.1112766] 51. Chen C-D, Li Y, Chen AK, Rudy MA, Nasse JS, Zeldich E, et al. Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho. PLoS One. 2020:e0226382. [ DOI:10.1371/journal.pone.0226382] 52. Zhou HJ, Zeng CY, Yang TT, Long FY, Kuang X, Du JR. Lentivirus-mediated klotho up-regulation improves aging-related memory deficits and oxidative stress in senescence-accelerated mouse prone-8 mice. Life Sci. 2018;200:56-62. [ DOI:10.1016/j.lfs.2018.03.027] 53. Chen C-D, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, et al. The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. Journal of Neuroscience. 2013;33(5):1927-39. [ DOI:10.1523/JNEUROSCI.2080-12.2013] 54. Ruis J. [Alzheimer type dementia]. Rev Infirm. 2008. 55. Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, et al. Alzheimer's Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci. 2022;14:742408. [ DOI:10.3389/fnagi.2022.742408] 56. Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR. Klotho overexpression improves amyloid-beta clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13239. [ DOI:10.1111/acel.13239] 57. Long F-Y, Shi M-Q, Zhou H-J, Liu D-L, Sang N, Du J-R. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice. European Journal of Pharmacology. 2018;820:198-205. [ DOI:10.1016/j.ejphar.2017.12.019] 58. Zeng C-Y, Yang T-T, Zhou H-J, Zhao Y, Kuang X, Duan W, et al. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer's disease-like pathology and cognitive deficits in mice. Neurobiology of aging. 2019;78:18-28. [ DOI:10.1016/j.neurobiolaging.2019.02.003] 59. Li C, Siragy HM. (Pro) renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. American Journal Of Physiology-Endocrinology And Metabolism. 2015;309:E302-E10. [ DOI:10.1152/ajpendo.00603.2014] 60. Yossef RR, Al-Yamany MF, Saad MA, El-Sahar AE. Neuroprotective effects of vildagliptin on drug induced Alzheimer's disease in rats with metabolic syndrome: Role of hippocampal klotho and AKT signaling pathways. Eur J Pharmacol. 2020;889:173612. [ DOI:10.1016/j.ejphar.2020.173612] 61. Adeli S, Zahmatkesh M, Tavoosidana G, Karimian M, Hassanzadeh G. Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog Neuropsychopharmacol Biol Psychiatry. 2017;87:72-94. [ DOI:10.1016/j.pnpbp.2016.09.009] 62. Kakar RS, Pastor JV, Moe OW, Ambrosio F, Castaldi D, Sanders LH. Peripheral Klotho and Parkinson's Disease. Mov Disord. 2021;36:1274-6. [ DOI:10.1002/mds.28530] 63. Sancesario GM, Di Lazzaro G, Grillo P, Biticchi B, Giannella E, Alwardat M, et al. Biofluids profile of alpha-Klotho in patients with Parkinson's disease. Parkinsonism Relat Disord. 2021;90:62-4. [ DOI:10.1016/j.parkreldis.2021.08.004] 64. Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, Haghani S, Zeinali H, Roghani M. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson's disease: Involvement of PKA/CaMKII/CREB signaling. Exp Gerontol. 2017;100:70-6. [ DOI:10.1016/j.exger.2017.10.023] 65. Pathare GV, Shalia KK. Klotho: an emerging factor in neurodegenerative diseases. Biomedical Research Journal. 2019;6:1. [ DOI:10.4103/BMRJ.BMRJ_3_19] 66. Zeldich E, Chen C-D, Boden E, Howat B, Nasse JS, Zeldich D, et al. Klotho is neuroprotective in the Superoxide Dismutase (SOD1 G93A) mouse model of ALS. Journal of Molecular Neuroscience. 2019;69:264-85. [ DOI:10.1007/s12031-019-01356-2] 67. Karami M, Mehrabi F, Allameh A, Pahlevan Kakhki M, Amiri M, Emami Aleagha MS. Klotho gene expression decreases in peripheral blood mononuclear cells (PBMCs) of patients with relapsing-remitting multiple sclerosis. J Neurol Sci. 2017;381:305-7. [ DOI:10.1016/j.jns.2017.09.012] 68. Emami Aleagha MS, Siroos B, Ahmadi M, Balood M, Palangi A, Haghighi AN, et al. Decreased concentration of Klotho in the cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 2015;281:5-8. [ DOI:10.1016/j.jneuroim.2015.02.004] 69. Ahmadi M, Emami Aleagha MS, Harirchian MH, Yarani R, Tavakoli F, Siroos B. Multiple sclerosis influences on the augmentation of serum Klotho concentration. J Neurol Sci. 2016;362:69-72. [ DOI:10.1016/j.jns.2016.01.012] 70. Yamate-Morgan H, Lauderdale K, Horeczko J, Merchant U, Tiwari-Woodruff SK. Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin. Neuroscience. 2019;406:667-83. [ DOI:10.1016/j.neuroscience.2019.01.038] 71. Zeldich E, Chen C-D, Colvin TA, Bove-Fenderson EA, Liang J, Zhou TBT, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. Journal of Biological Chemistry. 2014;289:24700-15. [ DOI:10.1074/jbc.M114.567321] 72. Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, et al. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology. 2019;92:e1878-e89. [ DOI:10.1212/WNL.0000000000007323] 73. Neitzel J, Franzmeier N, Rubinski A, Dichgans M, Brendel M, Alzheimer's Disease Neuroimaging I, et al. KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. Nat Commun. 2021;12:382. [ DOI:10.1038/s41467-021-23755-z] 74. Xiang T, Luo X, Ye L, Huang H, Wu Y. Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav. 2022;128:108509. [ DOI:10.1016/j.yebeh.2021.108509] 75. Torbus-Paluszczak M, Bartman W, Adamczyk-Sowa M. Klotho protein in neurodegenerative disorders. Neurological Sciences. 2018;39:1677-82. [ DOI:10.1007/s10072-018-3496-x] 76. Wolf EJ, Morrison FG, Sullivan DR, Logue MW, Guetta RE, Stone A, et al. The goddess who spins the thread of life: Klotho, psychiatric stress, and accelerated aging. Brain Behav Immun. 2019;80:193-203. [ DOI:10.1016/j.bbi.2019.03.007] 77. Sedighi M, Baluchnejadmojarad T, Afshin-Majd S, Amiri M, Aminzade M, Roghani M. Anti-aging Klotho Protects SH-SY5Y Cells Against Amyloid beta1-42 Neurotoxicity: Involvement of Wnt1/pCREB/Nrf2/HO-1 Signaling. J Mol Neurosci. 2021;71:19-27. [ DOI:10.1007/s12031-020-01621-9] 78. Cheng M-F, Chen L-J, Niu H-S, Yang T-T, Lin K-C, Cheng J-T. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells. Acta Neurobiol Exp (Wars). 2015;75:60-71. [ DOI:10.55782/ane-2015-2016] 79. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15. [ DOI:10.1074/jbc.M114.567321] 80. Chen C-D, Zeldich E, Li Y, Yuste A, Abraham CR. Activation of the anti-aging and cognition-enhancing gene klotho by CRISPR-dCas9 transcriptional effector complex. Journal of Molecular Neuroscience. 2018;64:175-84. [ DOI:10.1007/s12031-017-1011-0]
|
|
Ghadiri T, Azarfarin M, Namvar G, Samnia Z. Underlying Mechanisms of Neuroprotective Actions of Klotho Against Cognitive Impairment in Neurodegenerative Diseases. Shefaye Khatam 2023; 12 (1) :94-110 URL: http://shefayekhatam.ir/article-1-2461-fa.html
قدیری طاهره، آذرفرین مریم، نامور غلامرضا، سامنیا زینب. مکانیزمهای دخیل در نقش حفاظتی کلوتو در مقابل اختلالات شناختی در بیماریهای تحلیلبرنده عصبی. مجله علوم اعصاب شفای خاتم. 1402; 12 (1) :94-110 URL: http://shefayekhatam.ir/article-1-2461-fa.html
|