[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 12، شماره 3 - ( تابستان 1403 ) ::
دوره 12 شماره 3 صفحات 63-55 برگشت به فهرست نسخه ها
مقایسه اثر ۱۲ هفته تمرینات استقامتی و مقاومتی بر سطوح استیل‌کولین و اینترلوکین یک بتا در موش‌های نر آلزایمری
آزاده نادری ، عباس صارمی* ، محمد رضا آفرینش خاکی
گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه اراک، اراک، ایران ، a-saremi@araku.ac.ir
چکیده:   (594 مشاهده)
مقدمه: بیماری آلزایمر علت اصلی زوال عقل است و شواهد فزاینده‌ای وجود دارد که نشان می‌دهد برنامه‌های ورزشی ممکن است به بهبود برخی از علائم این بیماری کمک کند. این مطالعه با هدف مقایسه تأثیر تمرینات استقامتی و مقاومتی بر سطوح استیل کولین و اینترلوکین 1 بتا در موش‌های صحرایی نر آلزایمری انجام شد. مواد و روش‌ها: 28 سر موش صحرایی نر نژاد ویستار انتخاب و به طور تصادفی در چهار گروه کنترل سالم، کنترل آلزایمری، آلزایمر+ تمرین مقاومتی و آلزایمر + تمرین استقامتی قرار گرفتند. آلزایمر با استفاده از دوز 8 میلی‌گرم تری متیل کلرید القا شد. تمرین استقامتی شامل شنا در آب با دمای 30 تا 33 درجه سانتی‌گراد، پنج روز در هفته، برای جلسات به تدریج از 15 تا 60 دقیقه طی 12 هفته افزایش یافت. تمرین مقاومتی شامل بالا رفتن از نردبان یک متری با وزنه‌های متصل به دم، شامل 26 پله با شیب 85 درجه بود، همچنین پنج روز در هفته به مدت دوازده هفته انجام شد. پس از اتمام دوره تمرین، سطوح خونی استیل کولین و اینترلوکین 1 بتا به روش الایزا اندازه گیری شد. یافته‌ها: نتایج نشان داد که سطح استیل کولین در گروه کنترل آلزایمری به طور معنی داری کمتر از هر دو گروه استقامتی+ آلزایمر و گروه کنترل سالم بود. پس از مداخله تمرینی، سطح بتا اینترلوکین 1 در گروه کنترل سالم به طور معنی داری کمتر از گروه کنترل آلزایمری، مقاومتی+آلزایمر و استقامتی+آلزایمر بود. با این حال، تفاوت معنی داری در سطوح اینترلوکین 1 بتا بین گروه‌های تمرین استقامتی و مقاومتی وجود نداشت. نتیجه‌گیری: این یافته‌ها نشان می‌دهد که ورزش ممکن است در کاهش التهاب مرتبط با آلزایمر مفید باشد، به طوری که تمرین استقامتی در این زمینه نسبت به تمرین مقاومتی اثربخشی کمی بیشتر نشان می‌دهد. این نشان می دهد که انواع خاصی از ورزش ممکن است در مدیریت وضعیت التهابی آلزایمر نقش داشته باشد و به طور بالقوه مزایای درمانی را ارائه دهد.
 
واژه‌های کلیدی: التهاب، استرس اکسیداتیو، زوال عقل
متن کامل [PDF 679 kb]   (204 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: نوروپاتولوژي
فهرست منابع
1. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. The Lancet. 2021;397(10284):1577-90. [DOI:10.1016/S0140-6736(20)32205-4]
2. Khaledi S, Ahmadi S. Amyloid Beta and Tau: from Physiology to Pathology in Alzheimer's disease. Shefaye Khatam. 2016;4(4):67-88. [DOI:10.18869/acadpub.shefa.4.4.67]
3. Ghasemzadeh Z, Jelodar SK, Serenjeh FN, Ghadikolaii NL. The Role of microRNA in the Pathogenesis of Schizophrenia. The Neuroscience Journal of Shefaye Khatam. 2022;11(1):119-32. [DOI:10.52547/shefa.11.1.119]
4. Pasand Mojdeh H, Alipour F, Borhani Haghighi M. Alzheimer's disease: Background, current and future aspects. The Neuroscience Journal of Shefaye Khatam. 2016;4(3):70-80. [DOI:10.18869/acadpub.shefa.4.3.70]
5. Murdock MH, Tsai LH. Insights into Alzheimer's disease from single-cell genomic approaches. Nature neuroscience. 2023;26(2):181-95. [DOI:10.1038/s41593-022-01222-2]
6. Moradi HR, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024;12(2):87-101. [DOI:10.61186/shefa.12.2.87]
7. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An Investigation into the Effects of Water-and Fat-Soluble Vitamins in Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam. 2023;11(3):95-109. [DOI:10.61186/shefa.11.3.95]
8. Saragea PD. Alzheimer's Disease (AD): Environmental Modifiable Risk Factors. International Journal for Multidisciplinary Research. 2024;6(4):1-1. [DOI:10.36948/ijfmr.2024.v06i04.26759]
9. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018;141(7):1917-33. [DOI:10.1093/brain/awy132]
10. McCarty MF, DiNicolantonio JJ, Lerner A. A fundamental role for oxidants and intracellular calcium signals in Alzheimer's pathogenesis-and how a comprehensive antioxidant strategy may aid prevention of this disorder. International Journal of Molecular Sciences. 2021;22(4):2140. [DOI:10.3390/ijms22042140]
11. Tohma H, Altay A, Köksal E, Gören AC, Gülçin İ. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC-MS/MS. Journal of Food Measurement and Characterization.2019;13:1607-19. [DOI:10.1007/s11694-019-00077-9]
12. Yegla B, Parikh V. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study. Behavioural brain research.2017;335:111-21. [DOI:10.1016/j.bbr.2017.08.017]
13. Patil P, Thakur A, Sharma A, Flora SJ. Natural products and their derivatives as multifunctional ligands against Alzheimer's disease. Drug development research. 2020;81(2):165-83. [DOI:10.1002/ddr.21587]
14. Chen WW, Zhang X, Huang WJ. Role of physical exercise in Alzheimer's disease. Biomedical reports. 2016;4(4):403-7. [DOI:10.3892/br.2016.607]
15. Meng Q, Lin MS, Tzeng IS. Relationship between exercise and Alzheimer's disease: a narrative literature review. Frontiers in neuroscience.2020;14:131. [DOI:10.3389/fnins.2020.00131]
16. Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Brændgaard H, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer's disease. Alzheimer's & Dementia. 2016;12(12):1207-15. [DOI:10.1016/j.jalz.2016.05.004]
17. Yu F. Guiding research and practice: a conceptual model for aerobic exercise training in Alzheimer's disease. American Journal of Alzheimer's Disease & Other Dementias. 2011;26(3):184-94. [DOI:10.1177/1533317511402317]
18. Yu F, Vock DM, Zhang L, Salisbury D, Nelson NW, Chow LS, at al. Cognitive effects of aerobic exercise in Alzheimer's disease: a pilot randomized controlled trial. Journal of Alzheimer's Disease. 2021;80(1):233-44. [DOI:10.3233/JAD-201100]
19. Yu F, Nelson NW, Savik K, Wyman JF, Dysken M, Bronas UG. Affecting cognition and quality of life via aerobic exercise in Alzheimer's disease. Western journal of nursing research. 2013;35(1):24-38. [DOI:10.1177/0193945911420174]
20. de Souto Barreto P, Cesari M, Denormandie P, Armaingaud D, Vellas B, Rolland Y. Exercise or social intervention for nursing home residents with dementia: a pilot randomized, controlled trial. Journal of the american geriatrics society. 2017;65(9): E123-9. [DOI:10.1111/jgs.14947]
21. Mitra S, Behbahani H, Eriksdotter M. Innovative therapy for Alzheimer's disease-with focus on biodelivery of NGF. Frontiers in neuroscience. 2019; 13: 38. [DOI:10.3389/fnins.2019.00038]
22. Saidie P, Mohebbi H, Jorbonian A. Pathomorphological Changes of Macrophage and Adipose Tissue Change and Negative Energy Balance Methods in Unsaturated-High-Fat-Fed Male Obese Rats of Mesenteric and Retroperitoneal Areas to Food Content. Sport Physiology. 2022;14(53):120-89.
23. Sadananda G, Subramaniam JR. Absence of metabotropic glutamate receptor homolog (s) accelerates acetylcholine neurotransmission in Caenorhabditis elegans. Neuroscience Letters. 2021; 746: 135666. [DOI:10.1016/j.neulet.2021.135666]
24. Schwarthoff S, Tischer N, Sager H, Schaetz B, Rohrbach MM, Raztsou I, at al. Evaluation of γ-carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorganic & Medicinal Chemistry. 2021; 46: 116355. [DOI:10.1016/j.bmc.2021.116355]
25. Segabinazi E, Gasperini NF, Faustino AM, Centeno R, Dos Santos AS, Almeida Wdat. Comparative overview of the effects of aerobic and resistance exercise on anxiety-like behavior, cognitive flexibility, and hippocampal synaptic plasticity parameters in healthy rats. Brazilian Journal of Medical and Biological Research. 2020;53: 9816. [DOI:10.1590/1414-431x20209816]
26. Bloomer RJ. Energy cost of moderate-duration resistance and aerobic exercise. The Journal of strength & conditioning Research. 2005;19(4):878-82. [DOI:10.1519/00124278-200511000-00026]
27. de Medeiros LM, De Bastiani MA, Rico EP, Schonhofen P, Pfaffenseller B, Wollenhaupt-Aguiar B,at al. Cholinergic differentiation of human neuroblastoma SH-SY5Y cell line and its potential use as an in vitro model for Alzheimer's disease studies. Molecular neurobiology.2019;56:7355-67. [DOI:10.1007/s12035-019-1605-3]
28. Lian W, Fang J, Xu L, Zhou W, Kang D, Xiong W, at al. Ameliorates memory and cognitive impairments induced by scopolamine via increasing cholinergic neurotransmission in mice. Molecules. 2017;22(3):410. [DOI:10.3390/molecules22030410]
29. Ali B, MS Jamal Q, Shams S, A Al-Wabel N, U Siddiqui M,A Sio, at al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer's disease treatment. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2016;15(5):624-8. [DOI:10.2174/1871527315666160321110607]
30. Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer's disease. Journal of biomedical science. 2017;24:1-2. [DOI:10.1186/s12929-017-0355-7]
31. Paz ML, Barrantes FJ. Autoimmune attack of the neuromuscular junction in myasthenia gravis: nicotinic acetylcholine receptors and other targets. ACS chemical neuroscience. 2019;10(5):2186-94. [DOI:10.1021/acschemneuro.9b00041]
32. Hahn B, Harvey AN, Concheiro-Guisan M, Huestis MA, Ross TJ, Stein EA. Nicotinic receptor modulation of the default mode network. Psychopharmacology.2021;238:589-97. [DOI:10.1007/s00213-020-05711-9]
33. Ren Z, Yang M, Guan Z, Yu W. Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Current Alzheimer Research. 2019;16(1):39-48. [DOI:10.2174/1567205015666181022093359]
34. Kosar M, Bozan B, Temelli F, Baser KH. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food chemistry. 2007;103(3):952-9. [DOI:10.1016/j.foodchem.2006.09.049]
35. Pourahmad J, Eskandari MR, Shakibaei R, Kamalinejad M. A search for hepatoprotective activity of aqueous extract of Rhus coriaria L. against oxidative stress cytotoxicity. Food and chemical toxicology. 2010 ;48(3):854-8. [DOI:10.1016/j.fct.2009.12.021]
36. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J,at al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. International wound journal. 2017;14(1):89-96. [DOI:10.1111/iwj.12557]
37. Yu F, Nelson NW, Savik K, Wyman JF, Dysken M, Bronas UG. Affecting cognition and quality of life via aerobic exercise in Alzheimer's disease. Western journal of nursing research. 2013;35(1):24-38. [DOI:10.1177/0193945911420174]
38. Klaassens BL, van Gerven JM, Klaassen ES, van der Grond J, Rombouts SA. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer's disease. Neuroimage.2019;199:143-52. [DOI:10.1016/j.neuroimage.2019.05.044]
39. Fisar Z. Linking the amyloid, tau, and mitochondrial hypotheses of Alzheimer's disease and identifying promising drug targets. Biomolecules. 2022;12(11):1676. [DOI:10.3390/biom12111676]
40. Noura M, Arshadi S, Zafari A, Banaeifar A. The effect of running on positive and negative slopes on TNF-α and INF-γ gene expression in the muscle tissue of rats with Alzheimer's disease. Journal of Basic Research in Medical Sciences. 2020;7(1):35-42. [DOI:10.5812/mejrh.99754]
41. Quillfeldt JA. Behavioral methods to study learning and memory in rats. InRodent model as tools in ethical biomedical research. 2016;7(1): 271-311 [DOI:10.1007/978-3-319-11578-8_17]
42. Nagib RM. Hypolipidemic effect of sumac (Rhus coriaria L) fruit powder and extract on rats fed high cholesterol diet. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. 2017;50(5):75-98. [DOI:10.21608/bnni.2017.6726]
43. Stanojevic D, Jakovljevic V, Barudzic N, Zivkovic V, Srejovic I, Ilic KP, at al. Overtraining does not induce oxidative stress and inflammation in blood and heart of rats. Physiological Research. 2016;65(1):81. [DOI:10.33549/physiolres.933058]
44. Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y, Yuan HY. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer's disease. Neurochemical research.2014;39:1533-43. [DOI:10.1007/s11064-014-1343-x]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naderi A, Saremi A, Afarinesh khaki M R. Comparison of twelve weeks of endurance and resistance exercise on the levels of acetylcholine and interleukin-1 beta in Alzheimer's male rats.. Shefaye Khatam 2024; 12 (3) :55-63
URL: http://shefayekhatam.ir/article-1-2503-fa.html

نادری آزاده، صارمی عباس، آفرینش خاکی محمد رضا. مقایسه اثر ۱۲ هفته تمرینات استقامتی و مقاومتی بر سطوح استیل‌کولین و اینترلوکین یک بتا در موش‌های نر آلزایمری. مجله علوم اعصاب شفای خاتم. 1403; 12 (3) :55-63

URL: http://shefayekhatam.ir/article-1-2503-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 3 - ( تابستان 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 51 queries by YEKTAWEB 4710